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Abstract

Formation and speciation of disinfection by-products (DBPs) depend on source water constituents. Many
studies have sought to model the formation of DBPs using both source water and in-plant operational data, and
although sometimes highly predictive of DBP formation, these models are limited in their applicability. To
create regional models that could apply to multiple plants within a watershed, classification trees were used to
predict finished water DBP parameters from source water constituents collected at multiple locations in a
watershed. Data were from a field study conducted in the Monongahela River in southwestern PA from May,
2010 to September, 2012, incorporating six different sites. Classification trees were used to predict violation of,
or compliance with, four threshold values that have regulatory and operational significance, namely, the total
trihalomethanes (TTHMs) maximum contaminant level (MCL) (regulatory standard of 80 ug/L), 80% of the
TTHMs MCL (64 ug/L), a bromine incorporation factor of 0.75, and 50% brominated THMs by mass. The
classification trees demonstrated accuracies of 76—83%. Fluorescence measurements were selected in all
classification trees, demonstrating their utility in DBP predictive models. Furthermore, model validation using
data from each collection site demonstrated the potential use of classification models across this spatially
variable region for drinking water plants unable to collect their own source water data. Thus, classification trees
provide a valuable tool for creating watershed-level source water-based DBP models.
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Introduction

D RINKING WATER DISINFECTION protects consumers from
waterborne pathogens; however, it contributes to the
formation of harmful disinfection by-products (DBPs). DBPs
form when natural organic matter (NOM), found in natural
waters, is oxidized by disinfectants necessary for control of
pathogenic microorganisms. The highly complex and vari-
able NOM present in water poses a challenge for drinking
water treatment because the nature of the NOM affects the
speciation as well as the extent of DBP formation (Reckhow
et al., 1990; Kitis et al., 2002; Singer et al., 2002; Liang and
Singer, 2003; Abouleish and Wells, 2015).

DBP formation is further complicated by the presence of other
ions in the source water (Singer and Chang, 1989), most notably
bromide. Source water bromide leads to increased formation of
DBPs, among them brominated DBP species (Richardson et al.,
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2003; Navalon et al., 2008; Chowdhury et al., 2010; Watson
et al., 2015), which are more toxic than the chlorinated forms
(Plewa et al., 2002; Richardson et al., 2003, 2007). DBP expo-
sure, through ingestion of drinking water or inhalation of com-
pounds volatilized during indoor use of disinfected water, has
been linked to adverse health effects, such as bladder cancer
(King and Marrett, 1996; Villanueva et al., 2004; Cantor et al.,
2010; Danileviciute et al., 2012; Kumar et al., 2014). To protect
public health, certain classes of DBPs are regulated by the U.S.
Environmental Protection Agency (EPA, 2006).

High observed variability of DBP formation and speciation
in drinking water has been the subject of extensive research.
Differences in the type of disinfectant used are responsible
for some of the differences observed in DBP speciation (Hua
and Reckhow, 2007b; Montesinos and Gallego, 2013; Pi-
sarenko et al., 2013; Tian et al., 2013; Mao et al., 2014). In
addition, seasonal changes in temperature and chlorine de-
mand, oxidant reaction time, and water residence time within
the distribution system, all affect DBP formation (Chen and
Weisel, 1998; Rodriguez et al., 2004, 2007; Sohn et al., 2006;
Hua and Reckhow, 2012; Allard et al., 2015; Sakai et al.,
2015). Furthermore, the variability in NOM, particularly the
humic/fulvic content, the aromaticity, and the hydrophobic
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and hydrophilic fractions, has been linked to variability in
DBP formation and speciation (Reckhow et al., 1990; Kitis
et al., 2002; Singer et al., 2002; Liang and Singer, 2003; Hua
and Reckhow, 2007a; Lu er al., 2009).

Since DBP formation and speciation are dependent on the
nature of the organic matter present in the source water,
multiple methods for quantifying and characterizing NOM
have been assessed, including total organic carbon (TOC),
dissolved organic carbon (DOC), and ultraviolet absorbance
at 254 nm (UV,s4) (Amy et al., 1987; Harrington et al., 1992;
Korn et al., 2002; Weishaar et al., 2003; Sohn et al., 2004;
Chen and Westerhoff, 2010; Abouleish and Wells, 2015;
Awad et al., 2016).

A composite term, SUVA,s4 (UV absorbance normalized
by DOC), is frequently used in DBP studies (Edzwald et al.,
1985; Kitis et al., 2002; Hua et al., 2015) because it has been
shown to be a good indicator of chlorinated DBP formation
(Kitis et al., 2001; Li et al., 2014a; Mayer et al., 2015), and in
some cases better than TOC in treatment plant operational
control (Najm et al., 1994). However, UV,s4 and SUVA,s,
may be less useful for DBP formation and speciation pre-
diction when NOM is of low molecular weight and low
aromaticity (Ates et al., 2007; Li et al., 2014a). Although
SUVA,s4 may be predictive of certain classes of DBPs, in
some data sets, it has also shown weak correlations with
trihalomethanes (THMs), a commonly observed and regu-
lated class of DBPs (Hua et al., 2015).

Excitation—emission matrices (EEMs) are gaining atten-
tion as an improved method for predicting DBP formation
because they provide a large amount of data to capture the
complexity and heterogeneity of NOM (Stedmon et al., 2003;
Stedmon and Markager, 2005; Baghoth et al., 2011; Pifer
et al., 2011; Pifer and Fairey, 2012; Awad et al., 2016).
Differential absorbance and fluorescence and differential log-
transformed absorbance and fluorescence have shown
promise as DBP predictive tools, as studies have shown high
correlations between these NOM measurements and multiple
DBP species (Roccaro et al., 2008, 2009; Roccaro and Va-
gliasindi, 2010; He et al., 2015).

To convert EEMs for further analysis and use in predictive
models, while incorporating all the data obtained from
EEMs, parallel factor analysis (PARAFAC) is often used
because it simplifies large, multidimensional data into a few
representative components, similar to principal component
analysis (Harshman and Lundy, 1994; Stedmon and Marka-
ger, 2005; Murphy et al., 2013). Studies have shown promise
for the use of EEM-PARAFAC components in predicting
DBP formation (Johnstone et al., 2009; Pifer and Fairey,
2014; Sakai et al., 2015; Yang et al., 2015a, 2015b). Fur-
thermore, research by Pifer and Fairey (2012) on EEMs
coupled with PARAFAC has demonstrated that EEM-
PARAFAC components may be better at predicting DBP
formation than SUV A,s,4. Other research has illustrated the
unique ability of EEM-PARAFAC components to differ-
entiate NOM among sources when using sampling from
multiple sites (Cabaniss and Shuman, 1987; Sierra et al.,
1994; He and Hur, 2015).

Pifer and Fairey’s (2014) success in developing strong
correlations between EEM-PARAFAC components and
DBP formation potential of natural raw water samples
chlorinated and measured in the laboratory provides moti-
vation for using similar NOM characterizations for predicting
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DBP formation in full-scale treatment plants across a wa-
tershed. Assessing treatability using fluorescence EEM-
PARAFAC components remains a challenge, however, as
previous studies have not found success in differentiating
between precoagulation and postcoagulation samples (San-
chez et al., 2013, 2014).

DBP formation has been modeled mainly using linear re-
gressions (with both untransformed and log-transformed
variables) that are based on source water characteristics and
in-plant operational data (Sadiq and Rodriguez, 2004;
Chowdhury, 2009; Ged et al., 2015). The use of in-plant
parameters and site-specific attributes often limits the appli-
cability of models to different sites or conditions (Nokes
et al., 1999; Westerhoff et al., 2000; Chowdhury, 2009; Ged
et al., 2015; Regli et al., 2015).

Recently, an extensive literature review and statistical
analysis identified few models where the standard errors of
the predicted DBP concentrations were less than the maxi-
mum contaminant level (MCL) allowable in drinking water
(Ged et al., 2015). Thus, although DBP models are useful to
understand general trends in the relationships among source
water, operational conditions, and DBP formation, they are
not particularly useful to a utility in predicting their future
compliance state should conditions in the source water
change.

A watershed model that provides general predictions of
DBP formation and speciation based on source water con-
stituents would be a valuable tool, particularly for plants
unable to develop their own site-specific models, and for
assessing the impacts of source water changes on multiple
drinking water plants within a region. Such wide-spread
source water changes might occur due to anthropogenic
discharges, such as those observed in the Allegheny River
due to oil and gas wastewater discharges (States et al., 2013;
Weaver et al., 2015) or due to climate change (Li et al.,
2014b).

A 3 year multitreatment plant field study in the Mono-
ngahela River in southwestern Pennsylvania provided source
and finished water quality data for the development of models
to assess the utility of extensive organic carbon character-
ization to predict DBPs under changing conditions. To avoid
the use of in-plant data not regularly collected by these util-
ities and to increase the effectiveness of source water pa-
rameters as finished water predictors, multiple NOM
characterization techniques were incorporated into the pres-
ent analysis to more accurately capture the complexity of the
NOM as a DBP precursor. Source water constituents alone
were used to create decision-making models that provide
broader, more widely applicable results. THMs were the
focus of the study because they are the most problematic class
of regulated DBPs in the Monongahela River (Handke,
2008).

The goals were (1) to create watershed-level models that
broadly define the treatability of the source water and (2) to
provide generalized results so that they are more useful for
decision makers (treatment plant operators and regulators)
within the region. To make the models useful for decision
makers, classification techniques were employed to make
predictions of exceedance of four threshold values—the total
trihalomethanes (TTHMs) MCL of 80 ug/L, 80% of the
TTHM MCL (64 pg/L), a bromine incorporation factor (BIF)
of 0.75 (corresponding to a 25% molar concentration), and
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50% THM brominated by mass. Classification trees were
explored in this study because they are easy to interpret and
can incorporate multiple trends within a data set, unlike
regression analysis that works when there is a single rela-
tionship throughout the data set. The flexibility of classifi-
cation trees to incorporate multiple trends is advantageous in
a regional watershed model, where many different source
water constituents exhibit different behaviors.

Classification trees have been used successfully to predict
specific operational decisions in drinking water treatment
plants, such as drinking water advisories (Harvey et al., 2015;
Murphy et al., 2016) and coagulant use (Bae et al., 2006). In
addition, regression trees (used to predict continuous vari-
ables) have been used in other DBP formation studies
(Trueman et al., 2016) and in broad-scale prediction of
multinational disease burden (Green et al., 2009). Thus, the
models described here are designed to enable assessment of
how source water variability affects finished water quality
and are designed to span a watershed rather than be specific to
a single intake location. These techniques can be applied to
other regions where anticipated source water changes have
the potential to affect finished water DBPs.

Materials and Methods

Field site and sample analyses

Data for this analysis were from a field study that included
six drinking water treatment plants along the Monongahela
River in southwestern Pennsylvania (Wilson and Van Brie-
sen, 2013; Wilson, 2013). Samples included in the current

analysis (N=111) span the period May, 2010 to September,
2012, and represent weekly to monthly sampling, depending
on season. The six plants, labeled A through F, in order from
upstream (southern-most site) to downstream (northern-most
site), are shown in Fig. 1. Two locations were sampled at each
of the six plants—from the source water intake in the river
and from the finished water leaving the plant after all treat-
ment steps. All plants in the study use chlorine disinfection
and two of the plants (Sites C and D) apply chlorine before
coagulation (prechlorination).

Source water geochemical data for this field study were
previously published (Wilson and Van Briesen, 2013), in-
cluding concentrations of bromide, chloride, and sulfate. In
addition to those data, source water sample analyses included
DOC, UV;,s4, and EEMs. DOC was measured for samples
that were passed through a 0.45 um filter on a Total Organic
Carbon Analyzer (O I Analytical, College Station, TX) and
UV,s4 was measured on a Cary 300 Bio UV Visible Spec-
trophotometer (Santa Clara, CA). EEMs were measured on a
Fluoromax-4 Spectrofluorometer (Horiba, Kyoto, Japan). For
finished water, the four THM species (chloroform, bromo-
dichloromethane, dibromochloromethane, and bromoform)
were measured using Standard Method 551.1 (EPA, 1995).
Missing and below detection data were imputed using log-
normal distributions of the known data (Helsel, 1990).

EEMs and PARAFAC

EEMs were measured for the 111 samples with the exci-
tation spectra ranging from 200 to 500 nm with a 2 nm step
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FIG. 1. Schematic of Mono-
ngahela River sampling locations.
Schematic shows the bank location
of six drinking water plants (A
through F), the corresponding lo-
cations along the river (in kilome-
ters) upstream of its confluence
with the Allegheny River, and lo-
cations of lock and dam structures
that control river flow.
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size and with the emission spectra ranging from 300 to
600 nm with a 5 nm step size. A blank sample (MilliQ water
measured with the same EEM parameters) was subtracted
from each sample EEM to remove the fluorescent signal from
water. Any negative values generated in the blank subtraction
(mostly from small variations in the water fluorescence) were
set to zero.

The fluorescence signal was calibrated by converting to
Raman units—normalizing all elements in the EEM by the
Raman water peak. Specifically, each fluorescence intensity
was divided by the integral of the fluorescence intensities
under the water peak (EX=350nm and EM =371-428 nm)
(Lawaetz and Stedmon, 2009). Once all the EEM data were
processed, they were analyzed through PARAFAC using the
DOMFluor toolbox (www.models.life.ku.dk/algorithms) cre-
ated by Stedmon and Bro (2008). Component data are pro-
vided in Supplementary Table S1 of the Supplementary Data.

PARAFAC can be used to simplify large, multidimensional
data sets by identifying the independent variables responsible
for variations in the data (Harshman and Lundy, 1994; Bro,
1997). The advantage of using PARAFAC for an EEM data
set, over other statistical techniques, is that it can handle
multidimensional data and produce components that represent
real physical phenomena (Stedmon et al., 2003; Stedmon and
Bro, 2008). PARAFAC uses three-way decomposition to
identify the underlying fluorophores present in multiple EEM
samples within the data set. In a simple data set with just a few
fluorophores, a correct PARAFAC analysis identifies PAR-
AFAC components that represent the individual fluorophores.
However, in a more complex mixture, where there are likely
many fluorophores, PARAFAC components represent groups
of fluorophores with similar fluorescent activity (Stedmon
et al., 2003; Stedmon and Bro, 2008).

Two outliers—Site D on September 7, 2011 and Site A on
June 23, 2011—were identified in the PARAFAC model and
removed, leaving 109 instances in the data set. The validated
PARAFAC model produced three components, which to-
gether sum to the total fluorescence intensity within each
sample (Stedmon et al., 2003; Stedmon and Bro, 2008). The
components generated by the PARAFAC model are repre-
sentative of the major organic carbon fluorescent groups
within the data set. The three resultant PARAFAC compo-
nents are referred to as C1, C2, and C3, and the total fluo-
rescence intensity is referred to as F,,.x. The components (C1,
C2, and C3), the total fluorescence F,,,., and the ratios of
each PARAFAC component to F,,.x (C1/Fpax, C2/Fhax, and
C3/Fax) are used as model inputs in the study to evaluate
both the main fluorescence signals and the relative contri-
bution of each fluorescence signal.

Calculating DBP composite values

From experimental data, TTHMs were calculated as the sum
of the four individual THM species—chloroform (CHCl;),
bromodichloromethane (CHBrCl,), dibromochloromethane
(CHBr,Cl), and bromoform (CHBr3), each measured as con-
centrations in ug/L.

Two different methods were used to measure the relative
contribution of brominated species to TTHM—BIF and
percentage brominated THM. BIF, a molar-based value, is
measured and incorporated in the analysis because source
water bromide (and subsequently hypobromous acid) is ex-
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pected to increase the rate of TTHM formation (Gallard et al.,
2003; Acero et al., 2005), thus, increasing the molar total
THM present in the finished water. Percentage brominated
THM by mass is also incorporated because the molar mass of
bromide is higher than that of chloride, and thus brominated
THMs by virtue of their higher mass increase the likelihood
of exceedance of the mass-based TTHM standard by more
than would be predicted on a molar basis.

BIF was first developed by Gould et al. (1983) and is used
frequently to describe the finished water quality, in terms of
the DBPs formed (Rathburn, 1996a; Elshorbagy et al., 2000;
Chang et al., 2001; Kawamoto and Makihata, 2004; Francis
et al.,2010; Tian et al., 2013). BIF is calculated according to
Equation (1):

0 x[CHCI31+ 1% [CHBrCL)+2+[CHBr, Cl1+3%[CHBr3]
[CHCI3)+[CHBrCly1+[CHBr,CI|+[CHBr3]

BIF =

¢y

where each term represents the molar concentration of the
species. BIF can range from O (all chloroform) to 3 (all
bromoform), with values closer to 3 representing a more
brominated TTHM sample. A threshold of 0.75 (25% molar
fraction of brominated THMs) was chosen to bisect the data.
Percentage brominated THM [shown in Eq. (2)] has been
used recently to assess the relative contribution of brominated
DBPs to the total regulated TTHMs (States et al., 2013).

% Brominated=
[CHBrCl,]1 + [CHBr,Cl] + [CHBr3]
[CHCI3] + [CHBrCl,] 4+ [CHBr,Cl] + [CHBr3]

x100%. (2)

A threshold of 50% brominated THMs was chosen to bi-
sect the data set and provide a measure of the relative con-
tribution of Br THMs to TTHMSs, by mass.

Statistical analyses

R (RCoreTeam, 2015), a statistical programming lan-
guage, was used to create regression and classification tree
models. Regression models, with both untransformed and
log-transformed variables, were used to predict numerical
finished water characteristics of interest—TTHM concentra-
tion, CHCl; concentration, CHBrCl, concentration, CHBr,Cl
concentration, CHBr; concentration, BIF, and percentage
brominated TTHMs by mass as a function of source water
parameters.

A backward step-wise regression was used to choose a
subset of variables based on the Akaike Information Criteria
for both sets of regressions (Akaike, 1974). Regressions using
log-transformed variables were tested, in addition to those
with untransformed variables, because environmental data
are often highly skewed, exhibiting multiplicative, order-of-
magnitude relationships, and previous DBP studies have
shown success in creating log-transformed predictions (Amy
et al., 1987; Rathburn, 1996b; Sohn et al., 2004). Regressions
were evaluated based on their adjusted R* values and residual
standard errors.

Classification trees are used to classify instances within a
data set by the binary response variable through stratification
of the data set. The data are split for each predictive input
variable, with branches chosen sequentially to minimize the



Downloaded by CARNEGIE-MELLON UNIVERSITY from online.liebertpub.com at 10/20/17. For personal use only.

CLASSIFICATION TREES FOR DBP FORMATION PARAMETERS 459

TABLE 1. SUMMARY OF VARIABLES USED IN REGRESSION AND CLASSIFICATION MODELS
Source water Finished water Threshold values
Br (mg/L) Total trihalomethanes (ug/L)-TTHMs
DOC (mg/L) Chloroform (ug/L)-CHCl; TTHM MCL (80 ug/L)
UV3s4 (cm_l) Bromodichloromethane (ug/L)-CHBrCl, 80% TTHM MCL (64 ug/L)
Cl Dibromochloromethane (ug/L)-CHBr,Cl BIF of 0.75 (25% Br THM by mol)
C2 Bromoform (ug/L)-CHBr; 50% Brominated THM (by mass)
C3
Fmax

Measured source water parameters are used as input variables. Measured finished water parameters serve as the basis for regression and
classification model response variables. Threshold values are used to create binary response variables for classification models.
BIF, bromine incorporation factor; DOC, dissolved organic carbon; MCL, maximum contaminant level; THM, trihalomethane; TTHMs,

total trihalomethanes; UV,s,, ultraviolet absorbance at 254 nm.

misclassification rate in the resulting response variable sub-
sets. The first split is based on the most predictive variable, and
subsequent splits are added based on previous or new input
variables if these variables are needed to improve the classi-
fication according to the response variable. Classification trees
are especially useful when the relationship between response
and input variables changes over different portions of the input
domain, whereas regression models fit a single relationship
over an entire domain. Confusion matrices (4 X4) and receiver
operator characteristic (ROC) curves are used to summarize
the overall performance of each classification tree.

The confusion matrices show the number of true positives,
true negatives, false positives, and false negatives for each
tree, which are used to calculate the sensitivity, specificity,
and accuracy. The sensitivity (true positive rate), specificity
(true negative rate), and accuracy (rate of correctly classified
instances) provide an indication of the fit of the model. High
sensitivity, specificity, and accuracy values, as well as rela-
tively similar sensitivity and specificity values indicate a
good fit and balanced result that minimizes both false posi-
tives and false negatives.

ROC curves show the trend of true positives (sensitivity) to
false positives (1—specificity). A greater the area under the
curve (AUC), obtained from an ROC curve that approaches
the top left corner of the plot more closely, indicates a more
predictive model. The decision trees and ROC curves were
created in R using the Rpart and ROCR packages (Chambers
and Hastie, 1992; Sing et al., 2005; RCoreTeam, 2015). The
decision trees were pruned using a minimum split of 25 (i.e.,
at least 25 observations must be present in a node, otherwise
any further downstream branches are pruned) and validated
using a 10-fold cross-validation, with instances randomly
partitioned into each of the 10 subsets.

A summary of the variables used in the regression and
classification models is presented in Table 1. Although
fluorescence is not usually routinely monitored by plant op-
erators, new research supporting online fluorescence moni-
toring of NOM may encourage future implementation of such
technology by treatment plants (Roccaro et al., 2009; Roc-
caro and Vagliasindi, 2010; Shutova et al., 2014). The four
binary response variables were chosen because they provide
important information about the quality of the water and can
be used by operators and regulators to make decisions.

The TTHM MCL is a threshold value that regulators have
set as an allowable limit of TTHM concentration in drinking
water at the point of consumption (EPA, 2006). As an en-

forceable regulation, operators must manage treatment plant
operations so as to not exceed the TTHM MCL at all points in
the water distribution system. Eighty percent of the TTHM
MCL, corresponding to a concentration of 64 ug/L., was also
chosen as a threshold value because it is commonly used as a
target for finished water TTHM in the plant to maintain
regulatory compliance throughout the system (Roberson
et al., 1995; Becker et al., 2013). BIF and percentage bro-
minated THMs indicate the relative presence of brominated
THM species, which may represent more significant health
concerns (Plewa et al., 2002; Richardson et al., 2003). The
threshold values of BIF and percentage brominated THMs
were set to represent a moderate distribution of brominated
THMs. BIF usually stays below 0.3 (on a 0 to 3 scale) in the
Mississippi, Missouri, and Ohio Rivers (Rathburn, 1996a).

Results and Discussion

Variability of finished water THMs

TTHMs were measured in the finished water at each of the
six drinking water treatment plants. The boxplots in Fig. 2 show
the range of TTHM levels at each of the six sampling locations
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FIG. 2. Boxplots of TTHM (ug/L) at each of six sampling
sites. Plots show median values, 75th and 25th quartiles
(upper and lower ends of the box), minimum and maximum
(nonoutlier) values (ends of whiskers), and outliers (+ signs).
TTHMs, total trihalomethanes.
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in the Monongahela River. Differences among sites are statis-
tically significant (ANOVA test p value of 1.05x 107°). Post
hoc t-tests indicate significant (p <0.05) differences between
all site pairs except Sites C and D and Sites A and B. Sites C, D,
and F have higher median levels of TTHMs as well as a larger
ranges of TTHM levels. The high variability in the river across
many sites is not surprising, especially since the river is navi-
gationally controlled by a series of locks and dams that create
pools, which can show significant variation in source water
quality (Wang et al., 2015). Variation in TTHMs at different
sites has been widely reported in prior work (Obolensky and
Singer, 2005, 2008; Francis et al., 2009). Sites C and D have
some of the highest TTHM levels, as would be expected since
these sites apply chlorine ahead of the coagulation and filtration
steps. The TTHM levels in Sites C and D may also be similar
because they are in the same pool of the river (Fig. 1), making
their source water quality likely more similar to each other.

Variability of bromide in source water

The presumed consistency of the single river source was a
primary reason for selection of the field study sites at multiple
plants using similar processes and all using free chlorine for
disinfection. As discussed previously, bromide is an impor-
tant source water component to consider because bromide in
the source water leads to more brominated DBPs (Plewa
et al.,2002; Richardson et al., 2003; Chowdhury et al., 2010;
Watson et al., 2015). Bromide was expected to be fairly
consistent across the six sites throughout the 3-year field
study; however, as reported by Wilson and Van Briesen
(2013), significant changes in bromide concentration were
observed during 2011-2013 in this river.

In addition to temporal variation, bromide in the river also
shows spatial variation. Figure 3 shows a high level of vari-
ability of bromide across the six sampling locations (ANOVA
test p value of 2.9 x 107). The high variability of the bromide
suggests that it is a potential cause of the high variability in the
finished water TTHMSs, compounding the challenge in asses-
sing the role of NOM characterization in TTHMs predic-
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FIG. 3. Boxplots of source water bromide concentration
(mg/L) at each of the six sampling sites along the Mono-
ngahela River. Plots show median values, 75th and 25th
quartiles (upper and lower ends of the box), most extreme
nonoutlier values (ends of whiskers), and outliers (+ signs).
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tion. Although bromide is a known DBP precursor and plays
an important role in DBP formation, bromide and TTHM
levels across all sites demonstrate a poor linear relationship,
with an R value of 0.06. This is consistent with many prior
studies that report bromide concentration alone is not pre-
dictive of finished water DBP concentrations (Al-Omari
etal.,2004; Chowdhury et al., 2010; Kulkarni and Chellam,
2010; Sakai et al., 2015).

Variability in organic source water characteristics

Organic precursors were analyzed using commonly mea-
sured criteria, including DOC, UV,s4, as well as through
fluorescence EEMs, which were analyzed using PARAFAC
analysis. Boxplots of DOC and UV,s, throughout the 3-year
study at each of the six plants can be found in Supplementary
Fig. S1 of the Supplementary Data. In general, DOC is very
stable across the sites. UV,s4 appears to be slightly more
variable, but an ANOVA test indicates that mean UV,s,
values are not significantly different across sites (p=0.22).
NOM is a well-known precursor for DBP formation, and
UV,s4 and DOC are often included in DBP prediction models
(Edzwald et al., 1985; Reckhow et al., 1990; Kitis et al.,
2002). However, these parameters are not correlated with
TTHMs in this data set (R=0.12 for DOC, 0.08 for UV,s,4).
Although DOC and UV,s4 provide some insight into organic
carbon, their stability across multiple sites and seasons sug-
gests these parameters are not providing enough information
about variability to account for variability in observed
TTHMs in finished water in the plants.

The EEM-PARAFAC analysis of the 109 sample EEMs
yielded three components, C1, C2, and C3. Fluorescence
maxima for the three components are shown in Table 2. All
three components are found in the humic acid-like region,
according to Chen et al. (2003). Furthermore, Sakai et al.
(2015) found that EEMs with fluorescence signals in the
“humic acid-like’” region are highly correlated with TTHM
formation. The three plots in Fig. 4 provide visual repre-
sentations of the resultant PARAFAC components. Before
considering the components as input modeling variables,
their stability across sites was evaluated. Boxplots that il-
lustrate the variability of the PARAFAC components and
total fluorescence intensity, F,., at each of the six sites
throughout the 3-year study can be found in Supplementary
Fig. S2 in the Supplementary Data.

The four fluorescence characterizations—C1, C2, C3, and
Fnax—show some similar patterns at multiple sites. For ex-
ample, Sites A and F and Sites D and E show similar central
tendencies for each of the four fluorescence parameters.
Overall, there is high variability in component values and

TABLE 2. FLUORESCENCE MAXIMA
(EMISSION AND EXCITATION) FOR THREE
PARAFAC CompPoNENTS—CI1, C2, AND C3

Emission Excitation
Component maxima (nm) maxima (nm)
C1 440 346
Cc2 385 314
C3 495 394

PARAFAC, parallel factor analysis.
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FIG. 4. EEMs of three components resulting from the EEM-PARAFAC analysis as follows: (a) C1, (b) C2, and (c¢) C3.
EEM, excitation—emission matrices; PARAFAC, parallel factor analysis.

Fonax across the six sites, which is confirmed by ANOVA tests
for each of the four fluorescence characterizations. ANOVA
tests for C1, C2, C3, and F,,. across the sites produced
significant p values, 0.04, 0.003, 0.01, and 0.01, respectively.
Although PARAFAC components show promise as DBP
predictive parameters individually, they demonstrate poor
linear fits with TTHMs (R values of 0.10, 0.14, 0.07, and
0.11 for C1, C2, C3, and F,,.«, respectively). Previous work
by Pifer and Fairey (2014) indicated high correlations be-
tween PARAFAC components and TTHM formation po-
tential measured in the laboratory; however, direct prediction
from a single component or F,,, was not successful with
these field samples.

Regression analysis

Source water constituents (i.e., NOM and bromide) are
expected to influence DBP formation, and, thus, have the
potential to predict concentrations of THM species. In this
work, the utility of expanded NOM characterization along
with bromide to predict THMs was examined. Operational
characteristics were specifically excluded from modeling to
ascertain whether models could be developed to account for
source water variability throughout the region, independent
of plant-specific operational characteristics.

Linear regressions were first developed for seven different
response variables—TTHMs, chloroform (CHCl3), bromodi-
chloromethane (CHBrCl,), dibromochloromethane (CHBr,Cl),
bromoform (CHBr3), BIF, and percentage brominated THMs—
using multiple input variables, including bromide, DOC, UV 54,
and EEM-PARAFAC components. The untransformed and log-
transformed variable regression models were statistically sig-
nificant (F statistic p <0.05), but showed poor to moderate R?
values, ranging from 0.07 to 0.44 for untransformed variable
regressions and 0.10 to 0.28 for the log-transformed variable
regressions. Complete results and further discussion are pre-
sented in the Supplementary Data.

Classification trees

Classification trees were used to predict whether four key
threshold values related to finished water DBPs—the TTHM
MCL, 80% of the MCL, a BIF of 0.75, and 50% brominated
THMs by mass—would be met. Two classification trees were
created for each of the four binary response variables (based
on the four threshold values)—one incorporating the three
PARAFAC components (C1, C2, and C3) and one incorpo-

rating the ratios of each PARAFAC component to the total
fluorescence intensity (C1/Fyax, C2/Fpax, and C3/F .x) as
well as the total fluorescence intensity, F.x.

ROC curves for all eight classification trees are shown in
Fig. 5. Figure 5a shows the ROC curves for the THM
threshold trees (TTHM MCL and 80% of the TTHM MCL)
and Fig. 5b shows the ROC curves for the brominated
threshold trees (0.75 BIF and 50% Br THM). The plots in
Fig. 5a show that incorporating component fractions provides
stronger predictions than components for the two THM
thresholds, and that when incorporating components, a better
prediction is obtained for 80% of the TTHM MCL (64 ug/L)
than for TTHM MCL. The plots in Fig. 5b show that incor-
porating components provides a stronger prediction than with
component fractions for the two brominated thresholds, and
that a better prediction is obtained for 0.75 BIF than for 50%
Br THM. Overall, the 0.75 BIF component tree provides the
strongest predictions of all eight trees, whereas the TTHM
MCL component tree provides the weakest predictions.

A summary of the performance of all eight classification
trees—component and component ratio trees for predicting
exceedance of each of the four threshold values—is shown in
Table 3. The AUC values range from 0.73 to 0.92 and the
accuracy values range from 0.76 to 0.83. Most of the trees
have high and fairly similar sensitivity and specificity values
(except for the component TTHM MCL tree and the com-
ponent ratio 0.75 BIF tree), which means that the trees pro-
vide fairly balanced results.

To evaluate the added value of fluorescence measure-
ments, AUC values were determined for trees without fluo-
rescence measurements. Based solely on DOC, UV,s4, and
bromide, AUC values are 0.60 for TTHM MCL, 0.56 for 80%
TTHM MCL, 0.89 for 0.75 BIF, and 0.76 for 50% Br THM.
All of these additional trees used the same minimum split as
the eight classification trees incorporating the fluorescence
measurements (25), except for the TTHM MCL tree that used
a minimum split of 15 because a tree could not be created
beyond a single node at a larger minimum split. The AUC
values for trees without fluorescence measurements are
overall worse than those for trees that incorporate fluores-
cence measurements, except for the 0.75 BIF, which gave
similar results both with and without fluorescence measure-
ments (AUC=0.89 for the component ratio tree and AUC=
0.89 for the tree that omits fluorescence variables). These
results indicate that, in general, fluorescence measurements
improve classification tree predictions.
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FIG. 5. Plot of ROC curves for classification trees. The TTHM MCL and 80% TTHM MCL (64 ug/L) trees are shown in
(a) and the 0.75 BIF and 50% Br THM trees are shown in (b). The ROC curves for the component trees (C) are drawn in
solid lines and the ROC curves for the component ratio (C/F) trees are drawn in dashed lines. Each response variable is
designated by a different color, as shown in the legend. The dotted black line at Y =X shows a curve based on a random
selection. AUC values are shown for the component trees in each plot. AUC, area under the curve; MCL, maximum

contaminant level; ROC, receiver operator characteristic; THM, trihalomethane.

Predicting TTHM concentrations in excess of the MCL.
The classification trees that predict exceedance of the TTHM
MCL Regulation (TTHM concentration of 80 ug/L) are shown
in Fig. 6. Figure 6a shows the tree that uses components as
inputs (C1, C2, and C3) and Fig. 6b shows the tree that uses
component ratios and total fluorescence (C1/Fy,ax, C2/F 10x, C3/
Finax and Fp,) as inputs. Classification trees provide good fits
of the data set, as demonstrated by the high-accuracy values and
generally high-sensitivity and high-specificity values. Though
the two trees performed similarly in accurately classifying in-
stances, the component ratio tree (Fig. 6b) is more balanced
in its classified outcomes, with nearly equal sensitivity and
specificity values. The component tree (Fig. 6a) in contrast has
a very high specificity (true negative rate) and very low sen-
sitivity (true positive rate) because the tree slightly under-
predicts exceeding the MCL, given in Table 3. The component
classification tree classified very few instances as “‘exceed,”
only 9 out of 109, although in reality 20 instances exceeded the
MCL.

The classification tree that uses components as inputs
identifies C2 and C3 as the most important variables in pre-

dicting TTHM MCL exceedance, with C2 being the domi-
nant input variable. According to the tree, instances with low
C2 values (<0.04) are likely to meet the TTHM MCL. Out-
comes for instances with high C2 values (=0.04) depend on
C3 values. Instances with high C2 values and high C3 values
(=0.02) are likely to meet the MCL, whereas instances with
high C2 values and low C3 values (<0.02) are likely to exceed
the MCL. The classification tree that uses component ratios
and total fluorescence intensity as inputs identifies C1/F,,x,
Finax, bromide concentration, and DOC as the most important
variables, with C1/F,,,x being the dominant input variable.
According to the tree, when the C1/F . ratio is high (=0.54),
instances are likely to meet the TTHM MCL. At lower C1/
F.x values (<0.54), F,.« is used to determine the outcome.
Low C1/F.x and low F,.x values (F.x < 0.11) generally
meet the MCL. Instances are more likely to exceed the MCL
when C1/F .« is low, Fp.« is high, and bromide concentra-
tion is high (=0.10), or when Cl/F,,,, values are moderate
(0.51-0.54), F .« is high, and DOC is low (<2.95).

A major difference between the two trees is the set of input
variables included in each tree. The component classification

TABLE 3. SUMMARY OF CLASSIFICATION TREE PERFORMANCE
Components Component ratios
Response Var. AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity
TTHM MCL 0.730 0.83 0.25 0.96 0.867 0.83 0.80 0.84
80% MCL 0.811 0.77 0.66 0.81 0.875 0.83 0.72 0.88
0.75 BIF 0.924 0.83 0.61 0.96 0.894 0.80 0.53 0.94
50% Br THM 0.857 0.80 0.76 0.83 0.815 0.76 0.80 0.73

The table shows the AUC (area under the curve) value, accuracy, sensitivity, and specificity for the classification trees that use

components (C1, C2, and C3) as fluorescence inputs and for the classification trees that use component ratios and total fluorescence (C1/
Finaxs C2/Fnax, C3/Fax, and Fi.y) as fluorescence inputs for all four response variables—TTHM MCL, 80% of the TTHM MCL, BIF of
0.75, and 50% brominated THM.

AUC, area under the curve; ROC, receiver operator characteristic.
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FIG. 6. Classification trees created in R predict whether the TTHM MCL threshold is exceeded based on source water
characteristics, including bromide, DOC, UV,s4, and component subgroups: (a) the three PARAFAC components (C1, C2,
and C3) and (b) the component ratios and total fluorescence intensity (C1/F.x, C2/Fhax, C3/Frnax, and Fpay). The input
parameters are drawn in ovals and the terminal nodes (indicating whether the TTHM MCL will be met or exceeded) are
drawn in rectangles. Branches are labeled with the split of the input parameters and the number of instances (n) pertaining to
the split. Terminal nodes are labeled with the overall outcome (‘“Meet” or ‘“Exceed’’) and the number of instances that
actually meet (M) or exceed (E) the threshold. DOC, dissolved organic carbon; UV,s4, ultraviolet absorbance at 254 nm.

tree incorporates only two fluorescence measurements (C2 and
C3), whereas the component ratio classification tree incorpo-
rates two fluorescence measurements (C1/F,. and F..,),
DOC, and bromide concentration. Despite these differences,
both trees show a preference for fluorescence NOM measure-
ments over DOC and UV,sy, based on order of appearance in
the tree and overall inclusion in the tree. Fluorescence mea-
surements have also been found to be superior to SUVA in
other studies when DOC is low (Lavonen et al., 2015). The
inclusion of bromide in only one tree and at the bottom of the
tree indicates that NOM characterization is more important
than bromide concentration in predicting TTHM regulatory
outcomes in this system, despite significant variability of bro-
mide in the source water. The behavior of TTHM formation
due to bromide concentration (increased likelihood of ex-
ceeding the MCL at higher bromide concentrations) is con-
sistent with previous studies that found that increases in
bromide concentration result in increased TTHMs (Hua et al.,
2006; Navalon et al., 2008; Chowdhury ef al., 2010).

Predicting TTHMs in excess of 80% of the MCL. Clas-
sification trees that predict exceedance of 80% of the TTHM
MCL (64 pg/L) are shown in Fig. 7. Figure 7a illustrates the
component classification tree (incorporating C1, C2, and C3)
and Fig. 7b illustrates the component ratio tree (incorporating
Cl/Fpaxs C2/Fnax, C3/Fpax, and Fy.y). The 80% MCL
(64 pg/L) classification trees look similar to the TTHM MCL
trees, in which most of the same input variables were used.
Both of the component trees incorporate C2 and C3 and the
C2 split occurs at the same cut-off value; however, the 80%
MCL tree also incorporates DOC. Both component ratio trees

incorporate C1/F,.x, Finax, and DOC, and the C1/F,,,, and
first Fp,,ax Splits occur at the same cut-off values; however, the
TTHM MCL tree incorporates bromide, whereas the 80%
MCL ratio tree incorporates C3/F,,,x. Of the four classifica-
tion trees related to the regulatory TTHM MCL threshold
(Figs. 6a, b and 7a, b), only one incorporates bromide, indi-
cating that it is not as important as NOM characterization in
determining whether or not the regulatory thresholds will be
met. Although bromide has been found to increase DBP
formation, many of the studies that report bromide being an
important precursor in DBP formation incorporate synthetic
laboratory samples that have higher concentrations of bro-
mide than those found in these natural waters (Chang ef al.,
2001; Richardson et al., 2003; Hua et al., 2006; Navalon
et al., 2008; Chowdhury et al., 2010; Hua and Reckhow,
2012; Watson et al., 2015). Additional discussion of the 80%
TTHM MCL classification tree is found in the Supplementary
Data.

Predicting BIF values in excess of 0.75. Classification
trees that predict exceedance of the 0.75 BIF threshold are
shown in Fig. 8. Figure 8a illustrates the component classi-
fication tree (incorporating C1, C2, and C3) and Fig. 8b il-
lustrates the component ratio tree (incorporating C1/F.x,
C2/Fnax> C3/Fax, and Fi.x). The component classification
tree (Fig. 8a) identifies bromide concentration, C1, and C2 as
the most important variables, whereas the component ratio
classification tree (Fig. 8b) identifies bromide and C3/F,,,x as
the most important variables. In both classification trees,
bromide is the first variable, meaning that it is the most in-
dicative of the outcome behavior—exceeding or meeting the


http://online.liebertpub.com/action/showImage?doi=10.1089/ees.2016.0044&iName=master.img-005.jpg&w=490&h=233

Downloaded by CARNEGIE-MELLON UNIVERSITY from online.liebertpub.com at 10/20/17. For personal use only.

464 BERGMAN ET AL.

a b

= 0.54 (n=35) <0.54 (n=74)
<0.04 (n=37) 20.04 (n=72) I Meet ®
_ ot | (M=33, E=2) |
Meet
(M=35, E=2) DOC <0.11 (n=12) 20.11 (n=62)
Meet @
(M=11, E=1)
29=DOC<40(n=9) <29 (n=52) 2 4.0 (n=11) < 2.9 (n=45) 2.9<DOC <4.0 (n=8) 24.0 (n=9)
—
Meet Exceed F i Meet Exceed
(M=9, E=0) (M=4, E=7) (M=8, E=0) (M=3, E=6)
0.18<TOC<0.18(n=8) <016 (n=26) 20.18 (n=11)
Meet % Exceed
<0.03 (n=29) 20.03 (n=23) (M=8, E=0) X (M=3, E=8)
Vi
Meet Exceed <0.16 (n=15) 20.16 (n=11)
(M=21, E=8) (M=11, E=12)
Meet Exceed
(M=10, E=5) (M=4, E=7)

FIG. 7. Classification trees created in R predict whether the 80% of the TTHM MCL (64 ug/L) threshold is exceeded
based on source water characteristics, including bromide, DOC, UV,s4, and component subgroups: (a) the three PARAFAC
components (C1, C2, and C3) and (b) the component ratios and total fluorescence intensity (C1/Fax, C2/Fax, C3/Fphax, and
Finax)- The input parameters are drawn in ovals and the terminal nodes (indicating whether the TTHM MCL will be met or
exceeded) are drawn in rectangles. Branches are labeled with the split of the input parameters and the number of instances
(n) pertaining to the split. Terminal nodes are labeled with the overall outcome (‘“Meet’” or ‘“‘Exceed’’) and the number of
instances that actually meet (M) or exceed (E) the threshold.
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FIG. 8. Classification trees created in R predict whether the 0.75 BIF (25% molar bromination) threshold is exceeded
based on source water characteristics, including bromide, DOC, UV,s4, and component subgroups: (a) the three PARAFAC
components (C1, C2, and C3) and (b) the component ratios and total fluorescence intensity (C1/Fpax, C2/Fax, C3/Finax, and
Finax)- The input parameters are drawn in ovals and the terminal nodes (indicating whether the TTHM MCL will be met or
exceeded) are drawn in rectangles. Branches are labeled with the split of the input parameters and the number of instances
(n) pertaining to the split. Terminal nodes are labeled with the overall outcome (‘“Meet’” or ‘““Exceed’’) and the number of
instances that actually meet (M) or exceed (E) the threshold.
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FIG. 9. Classification trees created in R predict whether the 50% brominated THM (by mass) threshold is exceeded based
on source water characteristics, including bromide, DOC, UV,s,4, and component subgroups: (a) the three PARAFAC
components (C1, C2, and C3) and (b) the component ratios and total fluorescence intensity (C1/Fax, C2/Fax, C3/Fpax, and
Finax)- The input parameters are drawn in ovals and the terminal nodes (indicating whether the TTHM MCL will be met or
exceeded) are drawn in rectangles. Branches are labeled with the split of the input parameters and the number of instances
(n) pertaining to the split. Terminal nodes are labeled with the overall outcome (‘““Meet’” or ‘““Exceed’’) and the number of
instances that actually meet (M) or exceed (E) the threshold.

0.75 BIF threshold. The inclusion of bromide as the dominant
variable in both classification trees is consistent with previous
research that found that bromide in the source water con-
tributes to increased BIF in finished water (Rathburn, 1996a).

Predicting THM bromination in excess of 50%. The
classification trees that predict exceedance of 50% bromi-
nated THMs (by mass) are shown in Fig. 9. The component
classification tree is illustrated in Fig. 9a and the component
ratio classification tree is illustrated in Fig. 9b. The compo-
nent classification tree identifies bromide, UV,s4, C1, C2, and
C3 as the most important input variables, and the component
ratio classification tree identifies bromide, UV,s4, and C1/
Fnax as the most important input variables for predicting
whether the 50% brominated THMs by mass threshold will
be exceeded. The results indicate that exceedance of the 50%
brominated THMs threshold is dependent on both bromide
and NOM characterization, with bromide being the most
important. Furthermore, DOC is not included in either tree,
indicating that the characterization of NOM is more impor-
tant than the quantity in brominated THM formation (by
mass), like the 0.75 BIF classification tree results. Both 50%
Br THM classification trees show unexpected results—in
three of the four, the exceedance scenarios contain lower
bromide levels (<60 ug/L). It was expected that exceedances
would more often occur in the high-bromide branches of the
trees (=60 ug/L) because higher bromide shifts DBPs toward
brominated species (Chang et al., 2001; Richardson et al.,
2003; Watson et al., 2015). However, the unexpected results
may be due to a more complex relationship between bromide
and NOM in DBP formation. Studies have shown that various
water parameters, such as pH and temperature, as well as the

character of the NOM affect the relative bromination of
DBPs (Roccaro et al., 2013, 2014; Yan et al., 2016).

The inclusion of fluorescence measurements in all eight
classification trees, in addition to the higher AUC values for
trees that include fluorescence measurements, demonstrates
that fluorescence measurements are valuable parameters
when classifying instances based on exceeding or meeting
TTHM or Br THM thresholds. All four component trees
(Figs. 6a, 7a, 8a, and 9a) include C2 and at least one other
component (C1 or C3). In the TTHM component trees
(Figs. 6a and 7a), C2 is the most important input variable. C2
has a similar peak to one of the two peaks in a PARAFAC
component identified in another study (EM/EX=381/219
[304]), which was found to be highly correlated with chlo-
roform formation in a multivariate linear regression (John-
stone et al., 2009). In this study, chloroform is the dominant
THM species. Three of the four component ratio trees
(Figs. 6b, 7b, and 9b) include C1/F,,.y, and in all three of the
trees, higher C1/F,,« ratios (=0.54) increase the likelihood of
meeting the threshold. Finally, seven of the eight classifica-
tion trees identify more than one NOM measurement as
important input variables. The use of multiple NOM charac-
terizations within the classification trees demonstrates the
need for multiple NOM characterization techniques for ef-
fectively capturing the complexity and heterogeneity of NOM
for predictive models.

Model validation across sites

To further evaluate the robustness of the classification trees
across a spatially variable data set, additional classification
trees were created on subsets of sites. The additional models,
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TABLE 4. SUMMARY OF ACCURACY RESULTS
FOR SITE VALIDATION CLASSIFICATION TREES
UsiNG ComPONENTS (C1, C2, AND C3)

TTHM 80% 50%
Model MCL MCL 0.75 BIF Brominated
Initial 0.83 0.77 0.83 0.80
SV 1 0.75 0.75 0.81 0.50
SV 2 0.82 0.74 0.82 0.65
SV 3 0.68 0.53 0.26 0.63
SV 4 0.60 0.50 0.75 0.70
SV 5 0.70 0.80 0.60 0.50
SV 6 0.50 0.20 0.70 0.80

Results are shown for the initial models (initial) and the six SV
models for each of the four response parameters.
SV, site validation.

referred to as site validations (SVs), were performed by cre-
ating models based on five of the six sites (training data set)
and then tested on the one remaining site (testing data set).
Successful model generation from the SVs would suggest that
a model created from multiple sites within a specific geo-
graphic region (such as the data set used in this study) could be
applied to other sites within the region that were not originally
incorporated into the model. Table 4 presents a summary of
the accuracy values within the testing data set for the classi-
fication tree SV models that use the components (C1, C2, and
C3) as inputs. Also contained in the summary are accuracy
values for the models presented previously that were gener-
ated on the entire data set (referred to as “‘initial’”). Overall,
the SV models given in Table 4 show fairly high accuracy
results. Except for 80% MCL SV 6 and 0.75 BIF SV 3 models,
the accuracy values for the SV models are 0.50 or higher.
Each of the four parameters has at least three SV models that
correctly classify 65% or more of the test instances.

The same site cross-validations were performed for the
classification tree models that used the component ratios and
total fluorescence (C1/Fp.x, C2/Fax, and C3/Fax, Frnax) as
inputs. A summary of the results from these SV classification
models is presented in Table 5. The SV models given in
Table 5 also show fairly high accuracy results. With the ex-
ception of TTHM MCL SV 6, 0.75 BIF SV 3, 50% bromi-
nated SV 1, and 50% brominated SV 3, the accuracy results
for the SV models are 0.50 or higher. Furthermore, each of

TABLE 5. SUMMARY OF ACCURACY RESULTS
FOR SITE VALIDATION CLASSIFICATION TREES
USING COMPONENT RATIOS AND TOTAL FLUORESCENCE
(C1/Fyax, C2/Fyux, C3/Fyax, AND Fy,x)

TTHM 80% 0.75 50%
Model MCL MCL BIF Brominated
Initial 0.83 0.83 0.80 0.76
SV 1 0.56 0.63 0.81 0.44
SV 2 0.88 0.74 0.76 0.65
SV 3 0.68 0.53 0.32 0.32
SV 4 0.65 0.60 0.70 0.65
SV 5 0.80 0.80 0.50 0.50
SV 6 0.40 0.50 0.80 0.80

Results are shown for the initial models (initial) and the six SV
models for each of the four response parameters.
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the four parameters has at least two SV models that correctly
classify 65% or more of the test instances. In general, the SV
models show lower accuracy values than the initial models
because they are developed and tested on a subset of the data.

SV models demonstrate a reasonable level of accuracy;
many of the SVs have accuracy values comparable to those of
the initial models. Given that these models are fairly pre-
dictive across sites, there is potential for use of the models for
other sites in the geographic region that were not originally
included in the analysis. In addition, this suggests that the
general method may provide insights into other geographic
regions. Creating a classification model using data from
multiple sites in a region may enable application at other
drinking water facilities throughout that region.

Conclusions

Classification techniques demonstrate an improvement in
predictive capability compared with regression models for
predicting finished water quality based on source water
characteristics alone for the data set used in this study, with
76-83% accuracy in correctly classifying instances. The
classification trees are able to partition the input space of the
explanatory variables to provide predictions that vary across
this space. In addition, they are specifically structured and fit
to provide optimal prediction of the threshold-defined cate-
gories for the dependent variables. Both sets of inputs—
components (C1, C2, and C3) and component ratios (C1/
Fiaxs C2/Fnax, C3/Fhax, and F,.)—demonstrated high
sensitivity, specificity, and accuracy results within the clas-
sification trees. ROC curves indicated that the 0.75 BIF tree
with component inputs was the best model overall.

NOM fluorescence measurements were chosen preferen-
tially over UV,s4 and DOC overall in the classification
models, indicating their utility in DBP predictive models. C2
was identified as an important input variable in all four
component classification trees and C1/F,,,x was identified as
an important input variable in three of the four component
ratio classification trees. In addition, the use of multiple
NOM characterizations within many of the models indicates
that multiple NOM characterizations that describe different
features of the NOM are necessary for creating robust pre-
dictive models. Bromide was used in all Br THM models
(0.75 BIF and 50% Br THM) but in only one of the TTHM
models (TTHM MCL and 80% MCL), indicating that NOM
may be more predictive of TTHM regulation than bromide in
this region.

The success of the classification trees demonstrates an
alternative method for assessing overall treatability of source
water within a basin and for broadly predicting the finished
water quality from source water characteristics. Classifica-
tion techniques can be used to create regional source water
models for other areas experiencing source water changes to
assess potential challenges for compliance with operational
and regulatory thresholds of interest.
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