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Energy storage systems (ESSs) can increase power system stability and efficiency, and facilitate integra-
tion of intermittent renewable energy, but deployment of ESSs will remain limited until they achieve an
attractive internal rate of return (IRR). Linear optimization is used to find the ESS power and energy
capacities that maximize the IRR when used to arbitrage 2008 electricity prices (the highest of the past
decade) in seven real-time markets in the United States for 14 different ESS technologies. Any reductions
in capital costs needed to achieve an IRR of 10% are solved for. Results show that the profit-maximizing
size (i.e. hours of energy storage) of an ESS is primarily determined by its technological characteristics
(round-trip charge/discharge efficiency and self-discharge) and not market price volatility, which instead
increases IRR. Most ESSs examined have an optimal size of 1–4 h of energy storage, though for pumped
hydro and compressed air systems this size is 7–8 h. The latter ESSs already achieve IRRs >10%, but could
be made even more profitable with minimal cost-reductions by reducing power capacity costs. The oppo-
site holds for Flywheels, electrical ESSs (e.g., capacitors) and a number of chemical ESSs (e.g., lead acid
batteries). These could be made more profitable with minimal cost-reductions by reducing energy capac-
ity costs.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Energy storage systems (ESSs) have the potential to revolution-
ize the way in which electrical power grids are designed and oper-
ated [1]. Presently, power grids require that the generation of
electricity continuously balance the demand for it. Significant
incorporation of ESSs into the grid would relax this constraint by
enabling electrical energy to be withdrawn from the grid when
there is excess generation and held in reserve until needed. Such
reserve capacity could enable cost and emissions reductions from
more efficient dispatch of generators, facilitate the integration of
renewable, but intermittent power sources such as wind and solar,
and provide numerous services that support grid reliability includ-
ing frequency regulation, spinning reserve capacity, transmission
and distribution support [2], voltage support including VAR
compensation [3], and grid stabilization during times of voltage
deviation, reverse-power-flow, and over-power in distribution
networks [4].

ESSs are already used for some of these purposes, but only to a
minor extent [1,3,5–10]. In the United States, the focus of this
study, there are 228 GW [2] of installed ESS capacity, which
equates to �20% of the nation’s total generating capacity. However,
just 2.5% of the total power delivered in the U.S. passes through an
ESS [11], and 99% of these are pumped hydro facilities used by
utilities for load balancing [2]. Furthermore, the deployment of
additional pumped hydro has stalled due to (among other factors)
declines in the price of natural gas and stricter environmental
regulations for water use in power generation [12].

To date, ESSs other than pumped hydro have rarely been cost
effective to install and/or operate. This situation may be changing
with increasing capacity of intermittent wind and solar power
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generators, as these generators have fluctuating power outputs
capable of increasing market price volatility [13]. This may im-
prove revenue opportunities for ESSs engaging in price arbitrage,
i.e. buying and storing energy when electricity prices are low and
then selling and discharging the energy back to the grid when
prices are high. The arbitrage potential of ESSs has been explored
both for generic storage devices [14–16], and for specific ESS tech-
nologies in particular markets [11,17–25].

Energy storage systems can be characterized in terms of energy
and power capacity, round trip efficiency, and self discharge.
Energy capacity is the maximum energy a storage device can hold.
Power capacity is the maximum rate at which energy can be trans-
ferred into and out of the device. Round trip efficiency is the ratio
of output-to-input energy for a storage device throughout the
charge and discharge of the device. And self discharge is the loss
of energy due to parasitic losses in an energy storage system,
where these losses may be due to mechanical friction, chemical
reactions, etc., depending on the technology.

Previous studies of ESS arbitrage potential fix both the power and
energy capacities, the ratio of which (i.e. energy/power capacity)
determines the maximum hours of energy the device can store.
However, [26] has shown that this ratio directly affects the arbitrage
profitability of an ESS. Thus by arbitrarily fixing power and energy
capacity, these studies do not optimally size each ESS, which may
prevent the estimation of the highest potential IRR, nor do they
quantify the required reduction in power and/or energy capacity
capital costs to enable each ESS to yield an acceptable IRR.

Similar to [17,26], a linear optimization model is used, to solve
for the maximum possible profit an ESS could achieve through
price arbitrage assuming perfect foresight of past price data from
a number of major U.S. real-time electric markets. In this analysis,
however, the energy and power capacities of the ESS that would
yield this maximum profit are also determined. The breadth of
currently available storage technologies for use in power grids
are evaluated, including: three that store and generate electricity
via mechanical energy – pumped hydroelectric (PH), compressed
air energy storage (CAES) and flywheels (FW); three devices that
store energy electrically – capacitors (CAP), electrochemical double
layer capacitors otherwise known as super- or ultra-capacitors
(EDLC), and superconducting magnetic energy storage (SMES);
and eight batteries that utilize chemical storage – lead acid (LA),
nickel–cadmium (NiCd), lithium-ion (Li-ion), sodium-sulfur
(NaS), sodium nickel chloride (a.k.a. ZEBRA), zinc-bromine (ZnBr),
polysulfide bromide (PSB), and vanadium redox (VR).

The economic viability of using each ESS for price arbitrage
based on its modeled internal rate of return in the example mar-
kets is assessed. The internal rate of return or IRR is the discount
rate that would make the net present value of the investment pro-
ject equal to zero. It is used here because it is independent of ESS
lifetime and power/energy capacity (e.g., the IRR of a 30-year,
1 kW ESS can be directly compared to the IRR of a 5-year, 1 MW
ESS). It is arbitrarily assumed that ESSs with an IRR <10% are
deemed unprofitable. The minimum changes to current power
and energy capacity costs for an ESS that would generate >10%
IRR in the most and least profitable of the example markets are
then solved for. Consequently, the results of the analysis point to
what may be the most cost-effective way to improve the econom-
ics of the ESSs for price arbitrage.

Note that while this analysis is limited to the arbitrage potential
of ESSs in real-time energy markets, ESSs might also be economically
used in the ancillary-service, capacity, and day-ahead energy mar-
kets. The ancillary service markets include the reserve capacity mar-
ket for contingency scenarios, and the frequency regulation market
for high-speed, second-to-second power balancing. Both of these
sub-markets might yield additional revenue opportunities for ESSs
[22], but participation in the reserve capacity market alone has yet
to prove profitable [2], and there is uncertainty over how much addi-
tional ‘‘compensation’’ ESSs might receive in the frequency regula-
tion market because FERC Order No. 755 (which requires markets
to compensate faster-responding units such as ESSs for signal-fol-
lowing accuracy) has yet to be fully implemented. Uncertainty also
exists in capacity markets over what payment is appropriate for
ESS capacity [26]. And while the day-ahead market is similar to the
real-time market, prices in the latter are generally more volatile than
in the former [27,28], so if an ESS is unprofitable in the real-time
market, the same is likely to be true in the day-ahead market. Hence
we do not explore any of these other market options here.

2. Methods

2.1. Price arbitrage optimization model

Fig. 1a depicts our model of the simulated interaction of an ESS
and a power grid for the purpose of price arbitrage. The energy E
(kW h) stored in the device at time t is given by

EðtÞ ¼ ð1� dÞEðt � DtÞ þ ½gPcðtÞ � PdðtÞ�Dt ð1Þ

where d is the fractional loss of energy over the interval Dt due to
parasitic losses, or self-discharge, g is the roundtrip efficiency of
the storage device, Pc(t) (kW) is the charging power from the grid
at time t (h), and Pd(t) (kW) is the discharging power from the
device at t. Note that E(t) = 0 at t = 0.

The linear program for maximizing the arbitrage revenue r ($)
in a year, assuming time periods of 1 h (i.e. Dt = 1 h) is expressed as

Max r ¼
Xn¼8760

t¼1

pðtÞ½PdðtÞ � PcðtÞ�Dt ð2Þ

subject to the following constraints

0 6 PdðtÞ; PcðtÞ 6 Pmax8t

0 6 EðtÞ 6 Emax8t
ð3Þ

In these Equations, n is the number of 1-h periods (i.e.
n = 8760 h in a year – the most optimistic estimate for it assumes
there will be no maintenance downtime). The price of electricity
at hour t is p(t) ($/kW h), Pmax (kW) is the power capacity of the
device (the maximum charge or discharge rate), and Emax (kW h)
is the device’s energy capacity (the maximum energy the device
can store). Fig. 1b shows a sample of the revenue-maximizing
operation of the model in which the ESS charges when the price
of electricity is low and discharges when it is high.

Eqs. (1)–(3)is solved using as input a yearlong time series of
one-hour interval electricity price data to arrive at a representative
annual revenue r for the ESS. Then, r is used to calculate the present
value (PV) of the total revenue the ESS would generate over its life-
time, RPV ($) as given by

RPV ¼ ðr � comÞ
XLðNcÞ

i¼1

1

ð1þ qÞi
ð4Þ

Here com is the annual operations and maintenance (O&M) cost, q is
the discount rate, and L(Nc) is the lifetime of the storage device,
which, for many technologies, depends on the number of times
the ESS is cycled per year.

LðNcÞ ¼min
Lc

Nc
; Ly

� �
ð5Þ

In Eq. (5), Ly is the maximum lifetime of the device in years, Lc is
the lifetime of the device in cycles, and Nc is the average number of
cycles per year, measured as the total energy charged annually to
the device divided by the energy capacity of the device.
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Fig. 1. ESS operation in energy markets. (a) Flowchart of the general model of interaction between an energy storage device and the grid. Roundtrip efficiency losses are
incurred at the time of charge, and at each time step there are self-discharge losses based on the level of stored energy. (b) Sample of four days of revenue-maximizing
operation showing hourly real-time price variations (upper) and stored energy (lower) for a 1 MW/5 MW h ideal ESS.
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For the overnight capital cost of the ESS, C, a linear function of
energy and power capacity is assumed. Here, cE and cP are the cap-
ital cost of energy ($/kW h) and capital cost of power ($/kW),
respectively.

C ¼ EmaxcE þ PmaxcP ð6Þ

The energy-to-power capital cost ratio (CCR) is represented as
cE/cP, while the hours of energy storage at the maximum discharge
rate is given by Emax/Pmax.

RPV and C are used to calculate the IRR by solving Eq. (7)for the
discount rate that yields zero net present value.

�C þ ðr � comÞ
XLðNcÞ

i¼1

1

ð1þ IRRÞi
¼ 0 ð7Þ

Note that this is a nonlinear equation, which is solved via the
Newton–Raphson technique.

2.2. Storage device parameter assumptions

Eqs. (1)–(7)require input values for roundtrip efficiency,
self-discharge rate, energy capacity, power capacity, and the
operational lifetime of the device, the latter being dependent on
the number of charge/discharge cycles. Estimates for these param-
eters for each of the 14 ESSs were obtained from [1,2,8,15,29,30],
and are given in Table A.1 in the Appendix. Table A.1 also contains
the most recent publicly reported values for the capital costs re-
quired by Eqs. (4) and (7). For this analysis, benchmark parameter
and cost estimates were chosen from [1] for consistency since they
include estimates for all of the ESSs analyzed in this study, while
acknowledging that the true costs of these systems are rapidly
changing.

Capital costs include the per-unit-energy capacity, per-unit-
power capacity, power conversion system (PCS), and balance-of-
plant (BOP) costs. The PCS costs are for all the components linking
the storage device to the power grid including power conditioning
equipment, control systems, power lines, transformers, system
isolation equipment, and safety sensors. The BOP costs encompass
construction and engineering costs, land, access routes, taxes,
permits, and fees. These costs were included within the power
and energy capital cost estimates of each system presented in
Table A.1. It is assumed that each capital cost component for an
ESS (i.e. power and energy capacity costs) scales linearly [1,31],
so IRR will not vary with system size. For example, a 2 MW h/
2MW system will yield twice the arbitrage value of a 1 MW h/
1MW system, but since the former would also cost twice as much
as the latter, the IRR for this ratio of power and energy capacities in
the ESS will remain the same.

With the exception of CAES, fixed and variable O&M costs for
the ESSs tend to be negligible [30], so they are omitted. CAES on
the other hand requires natural gas, so its variable operating cost
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could be significant. For this analysis, natural gas costs of $5/MCF
are assumed.
2.3. Electricity price data

The arbitrage potential of the 14 ESSs is assessed using 2008
locational marginal price (LMP) data from major nodes in seven
U.S. wholesale electricity markets. The nodes are examples of
many in the markets and so are not meant to be representative
of them but rather illustrate the range of price volatility across
the markets. The nodes are New York City in NYISO, the Houston
zone in the ERCOT, the American Electric Power (AEP) LMP in
PJM, Ameren in SPP, Alliant Energy Corporation (AEC) in MISO,
San Francisco in CAISO, and the northeastern Massachusetts/Bos-
ton region in ISO-NE. Year 2008 was chosen because prices exhib-
ited high volatility, and in some months reached the highest
average electricity prices of the last decade [32].

In these real-time market nodes, the price of electricity is deter-
mined by supply and demand and is typically struck in the hour
preceding the settlement interval. Since the majority of real-time
markets have at most a 1-h interval, and this is the periodicity of
the data available from all markets, a 1-h interval is assumed for
this analysis. The means and standard deviations of 2008 prices
among are plotted in Fig. A.2. Note that during this time period,
the nodes/zones with the greatest price volatility (as measured
by the standard deviation) were (1) Houston, (2) New York, and
(3) San Francisco, while those with the least volatility (measured
by standard deviation of price) were (1) AMRN, (2) AEP, and (3)
AEC.
3. Results and discussion

3.1. Model sensitivity

The arbitrage revenue of an ESS depends on the round-trip effi-
ciency and self-discharge of the device, as well as on its energy-to-
power capacity ratio or hours of energy storage. We also informally
refer to this as the system size. Fig. 2 illustrates how the arbitrage
revenue calculated by the model changes among the different real-
time markets as one model input is varied and the other two are
held constant. The plots in this figure are for a 1 MW ESS having
ideal base values of 0% self-discharge, 100% round-trip efficiency,
and 30 h of energy storage respectively. Also shown beneath the
plots are graphs of the published ranges of these parameters for
the 14 ESSs.

In general, arbitrage revenue decreases as daily self-discharge of
an ESS increases because more electricity must be purchased to
keep the ESS sufficiently charged for dispatch (Fig. 2a). Most of
the ESSs analyzed here have low (<5%) daily self-discharge
(Fig. 2d), but there are a number of devices that lose a significant
amount of energy over the course of a day. The worst are FWs,
which lose all of their stored energy within 24 h (Fig. 2d) due to
friction in the system’s bearings. Daily losses of 20–40% also occur
in CAP, EDLC, and NaS storage systems, while SMES and ZEBRA sys-
tems lose 15% (Fig. 2d).

In contrast to self-discharge, arbitrage revenue increases as
round-trip efficiency increases because less energy and thus less
revenue is lost as the energy is transferred between the ESS and
the grid during charging and discharging. All of the ESSs analyzed
here have an efficiency P60%. With one exception, the most
efficient of these are the same devices that suffer from high self-
discharge, i.e. FWs, EDLCs, NaS, SMES and ZEBRA storage systems.
The exception is Li-ion batteries, which not only have among the
highest (90–98%) efficiencies but also are among the lowest
(0.1–0.3% per day) self-discharge.
Arbitrage revenue also increases with increasing hours of
energy storage in an ESS, but nonlinearly. Revenue grows rapidly
as energy storage rises from 0 to 5 h but then approaches an
asymptote at storage capacities of P15 h due to the diurnal peri-
odicity of electricity prices. As a result, ESS storage capacities of
less than or equal to about half a day can extract the majority of
arbitrage revenue.

Note that revenue also depends on the real-time market that
the ESS is operating in. Of the markets analyzed, Houston is the
most profitable while Boston is the least, being <60% as lucrative
as Houston. Recall that Houston was the most volatile market; its
standard deviation was almost double that of the second most vol-
atile market, New York City. Boston on the other hand was among
the least volatile with a standard deviation of about a third to a
quarter that of Houston.
3.2. Arbitrage potential of current ESS technologies

The simulated maximum IRRs for the 14 ESSs in the seven
example real-time markets are plotted in Fig. 3. Also included in
the figure are the associated optimal system sizes for each ESS,
i.e. the hours of storage that yield the maximum IRRs. Both of these
results were generated by running the arbitrage model for the
profit maximizing size of each ESS in each market using the ranges
of round-trip efficiency, daily self-discharge, operational lifetime,
and power and energy capital cost estimates for the ESS from [1]
listed in Table A.1.

With the exception of FW, mechanical ESSs appear to have the
greatest IRR potential (Fig. 3). FW has negative IRRs for all perfor-
mance characteristics in all markets, but when the best perfor-
mance characteristics for PHS and CAES are modeled, both
achieve IRRs well in excess of 10% in every market except Boston.
Note though that the IRR for CAES is sensitive to fuel costs for nat-
ural gas, and that if the latter is raised from $5/MCF to $10/MCF,
CAES becomes substantially less profitable (Fig. 3). The optimal
size for PHS and CAES ranges between 2 and 14 h of energy storage.
For FW, it is 61 h, which is ineffectual for real-time markets with
one-hour settlement periods and explains why the IRRs for FW
are so low, as self-discharge would dissipate most of the energy
from the device if stored for an hour or more.

The IRRs for Chemical ESSs are generally poor. The exception is
ZEBRA ESSs, which yield among the highest IRRs modeled. The only
other chemical ESS to achieve an IRR >10% is LA, but only in the
Houston market in the most optimistic case. For all other chemical
ESSs, maximum IRRs fall below the 10% threshold and in most
cases are negative. The optimal storage capacities for chemical
ESSs range from �1.5 to 6 h (Fig. 3).

The modeled IRRs for the electrical ESSs are similar to those for
the chemical ESSs. EDLC achieves maximum IRRs >10% in Houston,
New York City and San Francisco, but is unprofitable in the other
locations. SMES and CAP are unprofitable under all circumstances
with the IRRs for CAP being among the lowest modeled. This is
because like FW, the optimal hours of energy storage for CAP are
61 h, and thus not suited for price arbitrage in hour-ahead real-
time markets (Fig. 4).
3.3. Cost reductions to ESS power and energy capacity that achieve
arbitrage profitability

In constructing Fig. 3, the price arbitrage model was used to cal-
culate the range of profit maximizing sizes for each ESS (i.e. P�max

and E�max) and the maximum potential revenues they could earn
in the 2008 markets studied. Using those values, the reductions
in power and energy capital costs were determined which enable
the ESS to earn a 10% IRR in each market.
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1 For interpretation of color in Fig. 4, the reader is referred to the web version o
this article.
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Given the expected annual revenue of an ESS, r, along with its
operational lifetime and O&M costs (Table A.1), Eq. (7) can be
rewritten to solve for the total cost of the ESS that yields a 10% life-
time IRR in that market, or C*

C� ¼ RPV ¼ ðr � comÞ
XLðNcÞ

i¼1

1

ð1þ 0:1Þi
ð8Þ

Combining this equation with Eq. (6)(see Section 1 of the SI) the
following equations for the capital cost of power and energy were
derived.

c�P ¼

1
cP0

� P�max

E�maxcE0

1� RPV

E�maxcE0

� �

1
c2

P0

þ P�max

E�maxcE0

� �2 ð9Þ

c�E ¼
RPV

E�max
� RPV

P�max
c�P ð10Þ

Here, c�P and c�E are the power and energy capital costs associated
with a 10% IRR, and cP0 and cE0 are the current power and energy
capital costs. Thus PmaxcP0 and EmaxcE0 are the current ESS capital
costs for power and energy capacity, respectively, while Pmaxc�P
and Emaxc�E are the power and energy capacity costs that allow for
a 10% ESS IRR and when summed give C*. These are the least-cost
change from PmaxcP0 and EmaxcE0 (as defined in Eqs. (A3–A6)). Hence-
forth, Pmaxc�P and Emaxc�E will be referred to Pmaxc�P and Emaxc�E as the
target power and energy capacity costs, respectively.

Fig. 4 compares the current vs. target power and energy capac-
ity costs for the 14 ESSs as percentages of the total current cost for
each ESS, i.e. C0 ¼ PmaxcP0 þ EmaxcE0 , so the comparison reflects
what fraction of an investment in these systems would go towards
power and energy capacity. As in Fig. 3, the ranges in percentages
account for the ranges in the reported input values for ESS round-
trip efficiency, self-discharge and power/energy capital costs
(Table A.1). And since the current power and energy capital costs
are different from the target capital costs, the cost ranges differ
in both value and width for each ESS (e.g., the energy capacity cap-
ital costs for SMES).

The comparison between current and target capacity costs is
shown for both the Houston (blue lines, Fig. 4) and Boston prices
(red1 lines, Fig. 4), which (respectively) are the most and least prof-
itable locations included in the analysis. Note that power/energy
capacity costs for an ESS are roughly the same in both markets, indi-
cating that the P�max and E�max of the ESS, the only market-dependent
parameters in this model, are about the same for Houston and Bos-
ton. This suggests that the profit-maximizing size of ESSs is deter-
mined primarily by the capital cost of power and energy capacity
for the ESS and not the market where it participates (see Section 2
of the SI).

In terms of current cost percentages (thick lines, Fig. 4), there is
a significant difference in the relative expense of power vs. energy
capacity among the ESSs. For example, power capacity costs would
represent �65–95% of the total cost for an optimally sized PHS and
CAES, while for FW and SMES, energy capacity costs make up �75–
95% of the total cost. Chemical ESSs as a whole have power and en-
ergy capacity costs that appear to be more balanced, with many of
these ESSs spanning a 50–50-price split between the power and
energy components. However, the percentage ranges indicate that
at present there is a tendency for power capacity costs to be more
f
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significant in LA, NiCd, Li-ion, and ZEBRA ESSs, and energy capacity
costs to be more significant in NaS, VR, ZnBr, and PSB systems.

Target costs for power and energy capacity (thin lines, Fig. 4)
would typically be less than current costs (thick lines, Fig. 4), but
in a several cases may be more, implying that system costs could
increase and still achieve a 10% IRR. The clearest example of the
latter is PHS, which has a current power capacity cost that falls be-
low the target cost in both the Houston and Boston markets. Con-
sequently, even though the current energy capacity cost for PHS
meets or exceeds that needed for a 10% IRR in these markets, the
overall IRR for PHS ends up exceeding 10% even in Boston.

CAES, EDLC, LA, and ZEBRA are the next most promising ESSs in
terms of profitability. All have current power and energy capacity
costs that fall 5% to >50% (ZEBRA power costs) below the maximum
target costs needed for the volatile Houston market. However, all
these ESSs also have current power and energy capacity costs that
are up to 40–50% more than the target costs facing low-volatility
prices in Boston.

The current power and energy capacity costs for all the remain-
ing ESSs exceed the target costs for these capacities in both the
Houston and Boston. For certain systems, this excess can be small
when considering either the power or energy capacity cost alone.
For example, current power capacity costs for FW and SMES exceed
target costs by only 5–10% (thin vs. thick lines, Fig. 4a), but current
energy capacity costs for these systems would also need to be re-
duced some 70–90% to become profitable and thus bring total costs
enabling the ESSs to yield an overall IRR of >10%.

This discrepancy between power and energy capacity costs for
uneconomic ESSs highlights what cost reductions in these ESSs
would be most effective. Returning to FW and SMES systems, cur-
rent energy capacity costs constitute 75–95% of the total cost for
these systems, so the most effective way to increase the IRR of
these systems would be to lower energy capacity cost. The same
generally holds for EDLC and CAP, and to a lesser extent for LA, NiCd
and ZEBRA. For CAES and PHS, however, power capacity costs dom-
inate, and their reduction would be the quickest way to raise IRR.

These modeling results should be viewed as first-order esti-
mates of the changes to power and energy capacity capital costs
that might make ESSs profitable for price-arbitrage in real-time
electric markets. Some of the modeling assumptions used
undoubtedly overestimate ESS profitability, including perfect fore-
sight of electricity prices, and that ESSs charge and discharge at the
same rate. Other assumptions, however, likely underestimate ESS
profitability, such as that capital costs scale linearly with ESS size.
There are economies of scale in a number of energy technologies
(e.g., power plants) and it is possible that larger ESSs may achieve
higher IRRs than found in this model. Use of the most recent pub-
licly available price estimates for ESSs will likely underestimate
profitability. However, these published values of costs should be
seen as benchmarks only, given that the results on the estimated
required cost reductions necessary to achieve profitability can be
readily interpreted for alternative price data. The potential effect
of other assumptions is unclear. For example, to estimate required
power and energy capacity cost reductions for an ESS, it was as-
sumed that P�max and E�max would remain unchanged, when those
cost reductions may result in a different profit-maximizing size
and thus a different P�max and/or E�max. The wide range of current
technological and cost parameters considered in this analysis,
however, likely compensates for uncertainties introduced by the
modeling assumptions used in this work.
4. Conclusions

Among the ESSs compared in this study, the results indicate
that PHS and CAES ESSs currently have the greatest potential for
price arbitrage, with ZEBRA systems demonstrating similar poten-
tial, only to a lesser degree. However, this analysis also indicates
how these systems might be further improved. ZEBRA systems
can become more profitable by either power or energy capital cost
reductions, or improvements in device efficiency (reducing wasted
energy). For PHS and CAES, the greatest IRR increase would come
from reductions in power capital costs. The latter ESSs require spe-
cialized siting, while ZEBRA systems do not. However, ZEBRA is a
relatively new energy storage technology with cost and technology
parameter estimates that are not as certain and established as PHS.

Assuming best performance characteristics, EDLC and LA ESSs
could also be profitable if optimally sized and operated in the most
volatile markets: LA, due to low capital cost and moderate effi-
ciency, and EDLC, due to high efficiency and long lifetime. How-
ever, LA batteries have lower cycle lifetimes and EDLCs have
relatively high power capacity costs, both of which would need
to be improved for any significant economic performance gains.

The majority of ESSs will be optimally sized at 4 or less hours of
energy storage (Fig. 3) due to the higher cost of energy capacity for
most technologies (Table A.1), especially electrical and chemical
systems. Optimal sizes for PHS and CAES are larger because it is
cheaper to add energy capacity to these ESSs by enlarging water/
air reservoirs than to increase power capacity by building more
or larger turbines. The converse is true for FW, which has consider-
ably greater energy capacity costs than power capacity costs. The
high self-discharge of these ESSs reduces their optimal sizes so
far below 4 h that these systems are currently unsuitable for price
arbitrage in real-time markets.

However, FW and other ESSs that may be uneconomic for real-
time markets could still possess significant economic potential for
other applications, particularly in ancillary service markets. For
example, the high self-discharge and high energy capital costs that
make FW a poor choice for energy markets may be largely irrele-
vant for frequency regulation where the need is for frequent
high-power, low-energy cycling.

ESSs are poised to play a major role in large-scale power sys-
tems, but this will require well-informed decisions regarding the
direction of further research, development, and deployment efforts
to reduce costs. This analysis not only provides an overview of the
state of current and emerging ESS technologies for price arbitrage
in real-time electric markets, but also a framework for understand-
ing how the costs of these systems need to be reduced to make
them profitable. An alternative to capital cost reductions is revenue
enhancement which can be achieved through participation in the
capacity and ancillary services markets. Any policy to promote
renewable energy and efficient operation of existing generating re-
sources needs to pay special attention to market design so that
ESSs can participate and be fairly compensated for the flexibility
and value they add to the systems in which they operate.
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