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Abstract
Weexamine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation
using 13months of observed power production fromutility-scale plants inGujarat, India. To our
knowledge, this is the first published analysis of geographic smoothing of solar PVusing actual
generation data at high time resolution fromutility-scale solar PVplants.We use geographic
correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the
observed variability of operating solar PVplants as a function of time scale.Most plants show a
spectrum that is linear in the log–log domain at high frequencies f, ranging from f 1.23- to f 1.56-

(slopes of−1.23 and−1.56), thus exhibitingmore relative variability at high frequencies than
exhibited bywind plants. PSDs for large PVplants have a steeper slope than those for small plants,
hencemore smoothing at short time scales. Interconnecting 20Gujarat plants yields a f 1.66-

spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%,
respectively.Half of this smoothing can be obtained through connecting 4–5 plants; reachingmarginal
improvement of 1%per added plant occurs at 12–14 plants. The largest plant (322MW) showed an
f 1.76- spectrum. This suggests that inGujarat the potential for smoothing is limited to that obtained
by one large plant.

1. Introduction

Low-pollution electric power sources, such as solar
power, have significant potential to reduce the emis-
sions associated with generating electricity. However,
solar photovoltaic (PV) generation is a variable energy
source, with large and rapid changes in output [1, 2].
This variability of solar PV is sometimes cited as a
barrier to its large scale integration into the grid [3–6].

Many authors have examined the potential for
geographic smoothing of PV in the time domain. That
literature is of two broad types. One uses modeled or
(less commonly) measured solar illumination. The
second uses observed data from power plants. There
are few of the second type because data are often pro-
prietary and unavailable to researchers. Here we use 13
months of approximately 1 or 2 minute time resolu-
tion data from 50 utility-scale PV plants separated by
up to 470 km; we have made these data publically
available.

Some irradiance studies suggest that geographic
separation may smooth PV variability. The correla-
tion of solar irradiance measured at two locations
decreases as the distance between the sites increases
[7–14]. In addition, cloud models have been used to
estimate the smoothing effect of geographic diversity
[15, 16], and changes in clear sky index for 23 loca-
tions show smoothing is likely for as few as five
plants [2].

However, studies examining actual generation
data provide conflicting results. Five-minute step
changes in normalized PV power from one German
plant can exceed ±50% but are never larger than
±5% for 100 summed German PV sites [17]. Mod-
eled generation at hourly resolution shows smooth-
ing, which is greater on partly-cloudy days [18].
Other studies have examined area effects, suggesting
that larger capacity plants [19, 20] or plants spread
out over a wider area [21] exhibit less variability than
smaller or more densely packed solar farms,
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respectively. Similarly, geographic smoothing using
a large number of smaller plants can reduce varia-
bility [22–25], where themaximum variability is the-
oretically proportional to the square root of the
number of plants aggregated [26]. On the other
hand, several studies suggest smoothing may not
occur. For instance, correlation of real power output
for three tracking PV sites in Arizona is high, sug-
gesting smoothing might not be effective there [1].
Similarly, Murata et al find that sites in Japan sepa-
rated by less than about 200 km are not independent
[27], which suggests smoothing might also not be
effective there.

Here we examine the potential for geographic
smoothing of solar PV in the Indian state of Gujarat
using actual generation data from multiple utility-
scale solar power installations.We use geographic cor-
relation and Fourier transform techniques to estimate
the power spectral density (PSD) [28, 29] and char-
acterize the observed variability of operating solar PV
plants as a function of time scale.

2.Data

Real time generation data from the State Load
Dispatch Centre of Gujarat Energy Transmission
Corporation website are available [30] for 50 solar PV
plants inGujarat, India. Thesemeasured power output
values are updated at uneven time intervals, generally
between 1 and 2 min. We captured website data at
1 min intervals from 17 February 2014 to 16 March
2015. The data capture process, link to our archived
data, and power plant characteristics are in the
supplementary data.

We used four tests to clean the data. In the first
two tests, the full datasets from 13 sites were dis-
carded either because (1) peak generation exceeded
the inverter’s capacity (resulting in a flat generation
during peak hours), or (2) the resolution of the
instruments measuring generation was too coarse
(resulting in reported generation at increments of
0.1 MW or larger). For the remaining data, we con-
ducted two tests at each timestep. Reported genera-
tion values less than −0.1 MW occurred almost
entirely during nighttime hours, but the individual
points (as opposed to the full day) were discarded.
Finally, we used visual inspection to confirm the
‘goodness’ of the data, resulting in discarding one
additional day of a small MW plant that our data
cleansing algorithm had not captured.

Figure 1 shows generation data for a 15MW plant
for a year, a week, a clear day, and a partly-cloudy data.

3.Methods

Given an improved understanding of type of varia-
bility exhibited by different power sources, a power
system operator can understand what combination

might be needed to match demand. We use Fourier
decomposition to examine the generation data in the
frequency domain, where the PSD at a particular
frequency indicates the relative amount of variability
at the corresponding timestep.

3.1. Calculating the PSD
To handle the observed uneven time steps, we used
the Lomb periodogram [31] as coded in Press [29].
An attribute of the Fourier or Lomb methods of
estimating the PSD is that increasing the temporal
length of the dataset does not reduce the standard
deviation of the PSD at any frequency. To increase
the signal-to-noise ratio, we used the standard
technique of partitioning the dataset into time
segments with an oversampling frequency of 4 (such
that most data points are in four time segments),
resulting in time segments of approximately 1.5
months. Since most time steps were less than 2 min
resolution, the highest frequency the data can
represent without aliasing (the Nyquist frequency)
corresponded to 4 min.

3.2. Scaling plants for comparison
To understand the potential for smoothing plants
over thousands of plant combinations, we needed a
simplifying process to compare plants. A linear line
of best fit would not work due to the unusual shape
of the PSDs. Therefore, we make the simplifying
assumption that the PSD of a single plant has a flat
spectrum (constant PSD) in the log–log domain at
low frequencies and an f m- spectrum at high
frequencies, such that the PSD can be approximated
using coefficients A (the PSD value at low frequen-
cies), m (the slope of the PSD at high frequencies),
and β (relates to y-intercept in log–log domain) via
equation (1):

f
A

f
PSD

1
1mb

=
+

( ) ( )

Since the day–night cycle causes solar PSDs to
exhibit a peak at 24 h (and its harmonics), we fit this
equation in Matlab in the log–log domain to fre-
quencies corresponding to times slower than 48 h
and faster than 12 h. Figure 2 shows the PSD of a
5 MW and a 25 MW plant with their respective fitted
curves.

To compare the PSD of a single plant to the PSD of
interconnected plants in a way that controls for plant
capacity, we scale the PSDs using equation (1)’s A
values. First we fit equation (1) in the log–log domain
to both the PSD of a single plant and the PSD of the
interconnected plants to determine the respective A
coefficients, Asingle and Ainterconnected. We then multi-
ply the interconnected PSD by Asingle/Ainterconnected so
that y-intercept at low frequencies is identical to the
single plant PSD. Finally, we refit the PSD of the inter-
connected plants with A, β, and m such that the lines
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of best fit for the single and the interconnected plants
cross at f=1/24 h. After scaling, a spectrum with a
steeper negative slope (e.g. f 1.76- ) has smaller high-
frequency fluctuations than a spectrum with a less-
steep slope (e.g. f ;1.23- ) in other words, a steeper
negative slope represents more high-frequency
smoothing. This is the procedure used by Katzenstein
[39] for wind plants.

3.3. Understanding the potential for smoothing
plants
To understand the potential for smoothing variability
in plants, we summed plants, calculated the PSD, and
compared the slopes m. Averaging over all possible
combinations for 2 through 20 plants, we investigate
how interconnecting plants can potentially provide
smoothing.

Figure 1.Generation data for the Precious Energy’s 15 MWplant (Plant 5 in the listing in the supplementary data) for (a) a year, (b) a
week, (c) a clear day, and (d) a partly-cloudy day.

Figure 2. Sample PSDs (blue) and line of bestfit via equation (1) (red) for two plants. (a)Plant 27, 5 MW, slope of f−1.31. (b)Plant 35,
25 MW, slope of f−1.53. Plant numbers correspond to the listing in the supplementary data.
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The PSD of some plants was noisy due to frequent
data dropouts. For some others, the PSD exhibited
low-pass filtering at frequencies above 10−3 Hz (corre-
sponding to approximately 15 min). In what follows,
we used 20 plants with spectra that had neither of these
features (figure 3). For each period when good genera-
tion data existed for all 20 plants, we calculated the
PSDs for all possible initial plants and combinations of
2 through 20 of the plants. For each combination, we
normalized the interconnected PSD to the single plant
PSD using the process described above. We then com-
pared the line of best fit for the two PSDs at particular
frequencies by taking the ratio of the single plant value
to the interconnected plants value in the x–y domain.
If no smoothing occurs when solar plants are inter-
connected, the result should be close to 1 for all fre-
quencies. If there is a reduction in variability then
there will be frequencies for which the fraction is less
than 1.

4. Results

4.1. Calculating individual PSDs
The supplementary data contains a PSD for each of
the plants. Most plants exhibit a spectrum at high
frequencies ranging from f 1.23- to f ,1.56- with the
very large 322 MW plant displaying a f 1.76- slope.
We find that larger plant size is correlated with a
steeper slope with a correlation coefficient of 0.57 at
p<0.001 (figure 3). These results agree with the
approximately f 1.3- spectrum identified by previous
research using generation data [1, 32, 33], (as well as
the f 0.7- spectrum identified when the y-axis is the
square of the power [34]). This implies that there is
still a large need for fast ramping power or demand
response to compensate for PV fluctuations at high
frequencies. Our results also validate for a real plant

the conjecture based on irradiance data that as the
capacity of the plant increases, it is likely that the
plant will cover a larger horizontal area and thus be
able to naturally filter out some of the variabil-
ity [19, 20].

4.2. Understanding the potential for smoothing
plants
To understand the potential for smoothing plants, we
summed generation of 20 plants as described above.
The time domain generation data are given in the
supplementary data, and figure 4 shows the PSDs and
resulting lines of best fit for 1, 5, 10, and 20 plants. The
amplitude of variability of 20 interconnected PVplants
at a frequency corresponding to 1 h has ∼45% of
variability than that of a single PV plant (figure 5). Just
as for wind’s geographic smoothing, the reduction is
very dependent on the time scale examined; at 6 h the
variability of 20 plants is 80% of that of a single plant.
We find a steepening of the f 1.3- spectrum toward
f 1.66- as the number of plants increases.

For reference, we calculated the Bird and Hul-
strom Clear Sky Index for direct normal irradiance
upon a horizontal surface and global horizontal irra-
diance upon a horizontal surface [35] at the location of
Plant 50 (Charanka) using 1 min resolution for 1 yr.
The slope of both of these models is−1.84 at high fre-
quencies, and the full PSDs are given in the supple-
mentary data.

Figure 5 shows the fraction of the spectrum of a
single plant retained versus the number of inter-
connected solar plants (N) at different timescales. For
reference, we show the reduction that would occur if
cloud activity in all locations was independent per
Hoff and Perez’s N−0.5 calculation [26] (which is very
similar to empirical results showing a N−0.46 relation-
ship [24]). Interconnecting approximately 20 plants

Figure 3. (a) Location of Solar PVPower Plants inGujarat, India. (b) Installed capacity versus absolute value of the slope of PSD at high
frequencies. Blue dots are the observations, while the solid red and dotted blue lines are the line of bestfit and the 95%confidence
interval, respectively.
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Figure 4. Sample summed power output for ten power plants. (a)The normalized PSDof 1, 5, 10, and 20 plants (in black, red, green,
andmagenta, respectively) using only the data for the days all 20 plants are available. (b)The corresponding line of bestfit for these
PSDs.

Figure 5. Fraction of the spectrumof a single plant retained versus the number of interconnected solar plants normalized at f=1/
24 h at different timescales. Interconnecting as few as 12 PVplants achieves themajority of the reduction of variability where
additional plants reduce less than 1%of variability.
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yields a 25%–45% reduction in variability depending
on frequency examined. Approximately half the geo-
graphic smoothing occurs by interconnecting 4–5
plants, with marginal returns of less than a 1% change
per plant after 12–14 plants have been connected. This
observed smoothing is not only much less than that
suggested by the theoretical N−0.5 [26], it also appears
to asymptote to a nonzero value at highN.

In order to enable comparison with earlier work
[2, 9, 18], we also investigated the potential for
smoothing by examining the distance dependence of
the correlation of generation ramps. We first calcu-
lated ramp data (difference in generation between
timesteps) between 10:00 and 17:59 local time. We
then interpolated these data to even 1 min timesteps,
then decimated the values to 5, 15, 30, and 60 min
timesteps (thus accounting for selection bias). As
shown in the supplementary data, we found a decrease
in correlation as distance between plants increases
toward 50 km. Near 100 km, the correlation becomes
almost constant as a function of distance, as onemight
expect with the correlation in the solar cycle (e.g.,
p=0.55, 0.25, 0.1a, and 0.01 for 1 h, 30 min, 15 min,
and 5 min timesteps, respectively). These findings
agree with the previous results examining distance
versus correlation of irradiance data. In addition, to
enable comparison with work on wind power [36, 37],
we calculated the coherence. As shown in the supple-
mentary data, we found that coherence is high at the
24 h and aliased frequencies. As the distance between
plants increases, coherence at higher frequency
decreases. However, even up to 242 km distance, there
is some coherence at low frequencies.

5.Discussion

Prior to wide-spread solar PV adoption, the power
sector will need to address solar generators’ intermit-
tency and variability. Here we study the potential for
geographic smoothing of PV using 13 months of
observed power production from utility-scale plants
inGujarat, India.

All of the plants examined displayed similar power
spectra to those in previously published literature
[1, 32, 33], albeit with slightly different slopes. The
expected diurnal peaks at 24 h and harmonics are pre-
sent. At high frequencies, the plants exhibit a spectrum
similar to cloud processes [38, 39]. These processes
may be a function of the f 5 3/- spectrum displayed by
wind [32] and the f 1- spectrum displayed by hydro-
logic processes [40], or the PV plant may act as a low
passfilter [34].

When interconnecting Gujarat PV plants,
approximately half of the smoothing can be obtained
through connecting 4–5 plants. Reduction in varia-
bility exhibits diminishing marginal returns, with
interconnecting 12–14 plants yielding a f 1.66- spec-
trum. However, the largest plant, the 322MW

Charanka Solar Park (at 23°54′N, 71°12′E), has an
f 1.76- spectrum. This suggests that in Gujarat, the
potential for smoothing may be limited to that
obtained by one large plant.

We further note that the PSD of the clear sky index
at theCharanka Solar Park showed a f 1.84- slope, a stee-
per slope than all of our observed individual and com-
bined plants. While this suggests more smoothing to
reduce the noise from cloudsmay be possible, we do not
observe this smoothing, suggesting that other limiting
factors may be in play. Examining the distance depen-
dence of the correlation of generation ramps, we find in
agreement with prior studies (7–14) limits that may be
associated with the clear sky index results. This is a phy-
sical characteristic thatwouldbe common tomany loca-
tions throughout the world. However, at the higher
frequencies where we are measuring the slope, we sug-
gest that different physics dominate, such as those asso-
ciatedwith cloud processes (which are in turn a function
of local geography, weather, and climate) and mechan-
ical processes associated with power plant machinery.
Of course, this work was limited to one region, Gujarat,
and if high time resolution data become available from
other regions it would be of great interest to determine if
these results are general.

The power sector may also wish to compare the
potential for geographic smoothing of solar PV to that
from other renewable energy types. In comparison to
the geographic smoothing of distributed wind plants in
Texas [41], the PV plants we examined show sub-
stantially less geographic smoothing. The two areas are
of comparable size (roughly 400 km×400 km). Inter-
connecting 20wind plants in Texas was found to reduce
fluctuations at frequencies corresponding to 6 h and 1 h
by 65% and 95% respectively, substantially more than
the 23%and 45%observed for PVplants inGujarat.We
also find that when interconnecting observed PV plants,
reaching marginal returns of less than a 1% change per
plant requires two or three times the number of inter-
connected plants than for wind (12–14 for PV, 3–6 for
wind). Since the area examined is comparable in size to
many balancing areas, the relatively small amount of
smoothing is likely to be relevant to practical application
of solar PVgeneration at grid scale.
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