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ABSTRACT

The incidence of widespread low-wind conditions is important to the reliability and economics of
electric grids with large amounts of wind power. In order to investigate a future in which wind plants are
geographically widespread but interconnected, we examine how frequently low generation levels occur
for wind power aggregated from distant, weakly-correlated wind generators. We simulate the wind
power using anemometer data from nine tall-tower sites spanning the contiguous United States. The
number of low-power hours per year declines exponentially with the number of sites being aggregated.
Hours with power levels below 5% of total capacity, for example, drop by a factor of about 60, from
2140 h/y for the median single site to 36 h/y for the generation aggregated from all nine sites; the
standard deviation drops by a factor of 3. The systematic dependence of generation-level probability
distribution “tails” on both number and power threshold is well described by the theory of Large
Deviations. Combining this theory for tail behavior with the normal distribution for behavior near the
mean allows us to estimate, without the use of any adjustable parameters, the entire generation duration

curve as a function of the number of essentially independent sites in the array.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The benefit of geographic diversity in reducing the variability of
wind power has been investigated since integration of wind gen-
eration into the electric grid was first seriously considered. Based
on his analysis of 5000 wind speed data points recorded by the U.S.
Weather Bureau at twenty cities east of the Mississippi River,
Thomas speculated in 1945 that firm capacities of 50—60% of
average generation could be obtained [1], while shortly thereafter
Putnam assessed the capacity value of geographic diversity to be
worth less than the cost of transmission needed to achieve it [2].
The smoothing benefit provided by geographic diversity would
have considerable economic importance if it allowed a grid system
to meet reliability targets with less conventional “dispatchable”
generating capacity than would otherwise be needed for a similar
amount of unsmoothed wind power. In the terminology of grid
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reliability it is useful to ask to what extent geographic diversity
increases wind power's firm generating capacity or its effective
load carrying capacity (ELCC) [3—6].

The probability that the aggregated power from an array of wind
generators falls below some small generation level is of particular
importance in determining ELCC and reserve requirements, as
pointed out by Kahn [3] and by Haslett and Diesendorf [4]. Char-
acterizing such “tail” probabilities and modeling how they depend
on factors such as the number and geographic layout of wind plants
making up the array can be challenging. Conventional measures of
variation around the mean, such as the variance or standard devi-
ation, reveal little about tail probabilities. Even though the power
statistics of large arrays of independent wind generators approach
the normal distribution, as required by the Central Limit Theorem,
they remain distinctly non-normal for small power levels near the
hard lower bound at zero output. Dowds and co-authors note that
many commercial wind integration studies for the United States
assume normal distributions of low-wind events [7].

Some previous studies have characterized tail probabilities (i.e.
the occurrence of low wind levels) empirically by examining his-
torical wind-speed records. In a 1978 study of data from 25 weather
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stations in what was then West Germany, Molly found that the
times during which total generation of arrays of hypothetical wind
plants was zero declined from 1500-7200 h per year for single sites
to less than 5 h/y for arrays of 18 sites within the 800-km (N-to-S)
national region [8]. A more recent study by Archer and Jacobson
using wind-speed data from meteorological stations in the U.S.
Midwest found that the incidence of average afternoon wind speed
less than a typical turbine cut-in speed (i.e. v < 3 m/s) dropped from
7.6% of the time for single sites to 2.6% for three sites spread over a
120 x 160 km area, to 0% for eight sites spread over a 550 x 700 km
area [9]. The duration curve they presented in follow-on work [10]
indicates that wind generation was below 5% of turbine capacity
21% of the time for a single site, 10% of the time for a 7-site array,
and 1.6% of the time for a 19-site array. In a study of the Nordic
region using actual wind generation records, Holttinen found that
while Denmark alone had production below 1% of capacity nearly
5% of the time during the years 2000—2002, the entire Nordic re-
gion never fell that low [11]. Using numerical-weather-model
reanalysis data roughly corresponding to the territory of the Mid-
continent independent system operator (MISO) Fisher et al. found
that for a network of 108 sites the output level that could be
counted upon all but 10% of the time was 7% of capacity during the
winter and 3% of capacity during the summer [12]. These studies
used historical data to characterize the tail probabilities, but don't
offer a way to predict the effect of adding additional wind plants in
new locations.

Recent investigations have focused on the effects of spreading
arrays of wind generators over especially large distances. Kempton
etal. [13,14] considered an array of offshore wind plants, using data
from buoys distributed along the entire extent of the U.S. East Coast,
while Fertig et al. [15] and Louie [ 16] evaluated the smoothing effect
on wind generation of interconnections between independent
system operators (ISOs) across the U.S. Huang et al. used reanalysis
data to study the variability of coupled wind plants spread over the
Great Plains of the U.S. from Montana to Texas [17]. A common
feature of these studies is a sharp decline with increased
geographic diversity of the fraction of time the aggregated wind
power falls below small generation thresholds.

A number of studies have attempted to estimate the complete
probability distributions of aggregated wind power, including the
tails, in terms of parameters determined from the contributing
generators. Justus and Mikhail [18] characterized an entire array of
wind generators by a single “effective” array wind speed having a
Weibull distribution with its shape parameter chosen to make its
standard deviation oy smaller than the standard deviation for a
single site g1 according to the number of sites in the array and their
average correlation p: oy = o1[(1+ (N — 1))/N]'/2. They then
modeled the array output power distribution by transforming the
array wind speed distribution through a new power curve that cut
in at a lower wind speed and reached rated capacity at a higher
speed than did the turbines supposed to be deployed at the indi-
vidual sites. This produces a complete model output-power prob-
ability density function; the “narrowing” of the wind-speed
distribution and the “widening” of the power curve act in concert to
greatly diminish the probability of low array power. Kahn used the
extensive data and pioneering method of Justus and Mikhail to
calculate the ELCC for wind arrays in California [3]. Sobolewski and
Feijéo used non-parametric distributions defined by kernel esti-
mators [19]. Carlin and Haslett pursed an alternate approach where
they assumed the square-root of site wind speed was normally
distributed, allowing the probability of zero array power to be
calculated almost exactly from the characteristics and pair-
correlations of contributing individual sites [20]. Hasche assumed
array output-power could be described by the Pearson-family Type
I (beta) distribution, and modeled the dependence of standard

deviation, skewness, and kurtosis by using empirical functions to
match the distance dependence pair and higher-order correlations
[21]. The chosen beta distribution has the advantage that it natu-
rally accommodates the bounds on array output power at zero and
total turbine capacity, although tail probabilities were not explicitly
investigated.

We demonstrate a novel method to quantify the tail of the
distribution of aggregate wind power using Large Deviations The-
ory. This method provides a simple heuristic characterization of
how the decline in occurrence of low-generation events depends
on the number of sites being aggregated. Although our character-
ization in the present form is useful only for statistically-
independent sites, it does not require making any assumptions
about, or fitting to, the form of the probability distribution of wind
speeds or wind power levels. In contrast, the methods proposed by
Hasche [21] and by Carlin and Haslett [20] require Weibull distri-
butions or Pearson-family Type I distributions, respectively. Our
method allows us to more accurately characterize wind power,
which is the convolution of a wind speed distribution and turbine
power curve and not easily represented by common distributions.
Carlin and Haslett noted “the effect of dispersal on the probabilities
of zero and rated power is significantly more marked than on the
coefficient of variation of windpower” a result we concur with and
further quantify here. Our method explains this observation as a
consequence of the differing dependence of tail and central
behavior on the number N of independent generators: exponential
N-dependence of tail probabilities according to Large Deviation
Theory in contrast to the 1/v/N dependence of the coefficient of
variation according to the Central Limit Theorem.

2. Methods
2.1. Simulated wind-power data

We investigate the number of hours per year that aggregate
wind power is less than a chosen threshold by simulating the po-
wer output of arrays of widely separated wind plants using historic
wind speed data. We utilize data from the 9 wind sites in the
continental United States shown in Fig. 1, according to four criteria:
they have publically-available data from towers taller than typical
meteorological stations (instrument height h in Table 1), their mean
wind speeds are similar (mean v in Table 1), their data overlap over
a substantial period of time, and their simulated wind power out-
puts are poorly correlated (correlation coefficients in Table 1). We
are not aware of other data sets with these characteristics; for
example, the data used by Rose and Apt [22] come from a region of
smaller geographical extent with consequently higher correlation.
We use 1-h mean wind speeds for the period from January 2007 to
December 2012, a total of 5.26 x 10* h. Most sites have anemom-
eters at multiple heights; we use the data from the height with
mean wind speed closest to 6 m/s because that is the speed range
for which data are available at the largest number of sites. We
exclude any measurements identified as bad by the supplier,
measurements less than 0 or greater than 40 m/s, or measurements
inconsistent with those taken by other sensors on the same tower
at the same time. This quality control excludes 9—38% of the data
from the individual sites and leaves 1.46 x 10 h when data are
available from all sites simultaneously. The mean wind speeds from
these nine sites, shown in Table 1, are lower than would typically be
selected for commercial wind power development, but are the
choices that provide the largest number of sites with similar wind
speeds.

Wind power is simulated from the historical wind speed data
using a turbine power curve based on the Vestas V110 2.0 MW
turbine [23], with a cut-in wind speed of 3 m/s, reaching rated
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Fig. 1. Locations of nine tall-tower sites in the U.S. (See supplementary data for site details).

power normalized to 1 at wind speed of 11 m/s, and cut-out wind
speed of 25 m/s. Details of the functional form of the power curve
are given in the supplementary data. Hereinafter, we represent
wind power as a fraction of total wind-generator capacity.

We count the number of hours per year that the simulated
power aggregated from combinations of N sites is less than a cho-
sen threshold pg, for N ranging from 1 (individual site) to 9 (all sites
combined), and plot pg vs. the count in the form of a generation
duration curve, as in Fig. 5. This curve, which depicts the same
information as a cumulative distribution function (cdf), is a plot
with the power threshold pg on the y-axis and the number of hours
per year that aggregate power is less than pg on the x-axis. (Here we
plot hours less than threshold rather than the conventional hours
greater than threshold, but on an x-axis with its origin at the right
and values increasing to the left. The curves thus retain precisely
their conventional form and meaning but allow the use of a loga-
rithmic axis to portray small duration values.) For each combina-
tion of sites, the duration curve was calculated by averaging the
individual sites' simulated power (computed from the measured
wind speed) at each hour (excluding any hour for which data was
missing from one or more of the sites comprising that array).
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Fig. 2. Histogram of simulated wind power for combined wind-speed records from all
nine sites. Dark bars at each end represent instances of power being exactly 0 or
exactly 1; bars are widened and offset for clarity. The distribution has mean u = 0.31
and standard deviation ¢ = 0.34.

To characterize a single site with behavior “representative” of
the nine sites we also pooled all the hourly simulated power values
from the nine individual sites (about 4.2 x 10° samples) and
calculated a single histogram, as shown in Fig. 2, taking care to
separately accumulate those simulated power values of exactly
0 (6g) or exactly 1 (61). We use a histogram with 72 bins (70 full-
width and 2 zero-width for dg and ¢1), but we show in the sup-
plementary data that our results are not sensitive to the number of
bins. For these nine sites the “representative” wind plant produces
zero power approximately 2000 h/y, and full power about 520 h/y.
Its capacity factor or average output power is u = 31%. The
0.00—0.014 bin is empty because the power curve of the simulated
turbine steps discontinuously from 0.0 to 0.014 at the cut-in wind
speed.

3. Large Deviations Theory model

Although the simulated power outputs of the sites in Fig. 1 are
neither independent nor identical we nevertheless model the
simulated aggregate wind power of an N-site array as though it
were the mean Py of N independent identically distributed (i.i.d.)
copies of a single random variable X, where X is wind power from
our “representative” site with the probability distribution given by
the histogram shown in Fig. 2. Large Deviations Theory (LDT — see
Lewis and Russell [24] for an accessible introduction) gives, under
quite broad conditions, tight bounds on the probability that this
mean is less than some small value; for the purposes of LDT, pg is
considered “small” if the probability that Py is less than pg is also
small, i.e. if pg is far from the center of the distribution of Py (See
Fig. 7 below for further definition of pg ranges appropriate for LDT.).

According to LDT, Pr(Py < pg) falls with N as e~Q(PoN_ The “rate
function” Q(pyp) is given as the Legendre transform of the random
variables' cumulant generating function A(f):

Qpo)= suplpofl — 4(6) : A()= In(e™). (1)

with (-) denoting expectation. Although the exponential of the rate
function captures the leading asymptotic dependence of probabil-
ity on N, following Rozovsky [25] a more complete expression is
given by:
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Table 1

Data characteristics for each site: anemometer height h above ground, average wind speed 7; for simulated wind power, the capacity factor cf, the fraction of time the turbine
produces no power dp, and the fraction of time it is at full power ¢;; Pearson cross-correlation between sites. The parameters of the representative site are those of the

histogram in Fig. 2.

Site h (m) v (m/s) w=cf do 01 Correlation coefficients
1 2 3 4 5 6 7 8
1 Argonne 60 54 0.27 0.11 0.02
2 Brookhaven 88 5.8 0.32 013  0.03 0.062
3 Hanford 122 5.0 0.27 036 008  —0.034  -0.026
4 Kennedy 90 6.0 035 012  0.03 0.091 0.078 0.015
5  LLNL 23 6.0 0.37 027 012  —0025  —0.028  —0.041 —0.026
6  Los Alamos 92 46 0.23 038  0.04 0.049 0.002 0.077 0.008 0.004
7 NWITC 80 48 0.22 037 0.6 0.070 0.048  —0.077 0052  -0.070  —0.007
8  SGP 25 6.1 0.36 015  0.08 0.170 0.031 ~-0.014 0.071 ~0.043 0240  0.055
9  WLEF 122 6.3 0.41 013  0.03 0220  —0.010 0.029 0.029  -0.055 0.065 0023  0.061
“representative” 0.31 0.23 0.06
model's i.i.d. assumption has probability (6o)", consistent with the
pr(P— <p ) _ -1 QPN 1 o(1)) 2) calculated limit for Q(0) = —In(dp) resulting in e-AON = (5o)N.
N=Fo 9-0(9)V2rN ’ Comparing the rate function calculated above with the rate func-

where ¢ is the value of # at which the supremum in equation (1) is
found, and the second derivative of the cumulant generating
function gives a(9) = ["(9)]'/2. With bin heights y for the histo-
gram in Fig. 2 normalized to represent the total fraction of samples
in each of the 70 bins, we calculated the cumulant generating
function as:

A(6)=In

o (1)
do +01e" + > ype ] (3)
1

Finding the maximum of equation (1) by numerical search gives
Q and ¢; evaluating the second derivative of A(f) at ¢ lets us
calculate the desired probability in equation (2).

In this simple model, the variability-reducing benefit of aggre-
gating wind power from N sites is largely determined by the
magnitude of rate function Q. As seen in Fig. 3, Q rises as power
threshold pg is decreased below mean p, indicating that modeled
variability reduction through geographic diversity becomes more
effective at smaller thresholds. The limiting value of Q at small
thresholds can be understood by considering the probability that
the output wind power of an N-site array is zero. This requires that
its N sites are all simultaneously at zero power, which under our
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Fig. 3. Rate functions for the wind generation distribution of Fig. 2 computed ac-
cording to both LDT and the normal approximation. Symbols show the rate function
values used for the LDT model curves in Fig. 4. Also shown is the rate function for a site
(Sweetwater, TX) with wind resource quality typical of a commercial wind plant.

tion for a normal distribution having the same mean and variance,
but that has probability density extending to implausible negative
wind-power values, shows the importance of correctly accounting
for the shape of the probability distribution tails. The normal-
distribution rate function has a simple analytic expression [24]
shown in Fig. 3. The rate functions of both go to zero at y, but for
thresholds (“deviations”) away from the mean, the tail of the mean
of normally-distributed variables, which extends to —oo, declines at
a slower rate than does the tail of the mean of our bounded wind-
power variables. That is, for bounded distributions like wind power,
the distribution's tails are thinner than those of the normal distri-
bution. The effect of changes in the probability of zero-power
output dg and in the output-power distribution on the rate func-
tion is further illustrated by the dashed curve, which shows the rate
function calculated from the simulated wind power distribution for
a site in Sweetwater, TX (see supplementary data) where higher
average wind-speeds (7.9 m/s) result in the modeled turbine being
below cut-in wind speed a much smaller 6.3% of the time compared
to the §p = 23% for our “representative” site.

4. Results and discussion

The number of hours per year that simulated wind power
aggregated from an N-site array is less than a given threshold pg
decreases essentially exponentially with the number N of aggre-
gated i.i.d. sites, as shown in Fig. 4. The box-plot shows the range of
durations for all possible combinations of N of the 9 sites shown in
Fig. 1, overlaid with theoretical curves computed under the
assumption that the sites are uncorrelated and have identical dis-
tributions. The theoretical curves for thresholds pg of 0.01 and 0.05
are calculated using LDT with the rate-function values shown in
Fig. 3, because those thresholds are far from the mean power u. The
theoretical curve for py of 0.15, which is closer to the mean, is
calculated using a normal distribution. Because we chose sites with
low average wind speeds, the number of hours per year of low-
wind events for our nine sites are significantly higher than for a
typical commercial wind site, shown by the crosses. The corre-
spondence of these results, calculated without the use of any
adjustable parameters, to the simulated power data encouraged us
to compare LDT results to the complete forms of the N-site gener-
ation duration curves.

Fig. 5 plots generation duration curves for N-site arrays on
linear (a) and logarithmic (b) axes. Each duration curve plots the
fraction of hours (reversed x-axis) that the aggregate wind power
is less than the value pg (y-axis). The linear plot (a), shows that this
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Fig. 4. Fraction of time wind power for an array of N sites is less than pg = 15%, 5%, or
1% of total capacity. The number of low-power hours per year decreases approximately
exponentially with N. Box and whisker symbols show the spread of sub-threshold
hours of wind power simulated from measured wind speeds for various possible
combinations of N sites, with the whisker spanning minimum to maximum and the
box the central two quartiles. Circles plot value for the unique 9-site combination. For
Po = 1% the missing circle and cut-off whiskers and box indicate values of 0. Dashed
and solid curves show theory assuming N i.i.d. sites; dashed: normal distribution, ®
[(w — 015)/(g[+/N)], solid: LDT, 1(1.69/v2wN)e 94N and 1(1.67/v2aN)e 09N,
respectively. Crosses plot sub-15%, 5%, and 1% durations for a site with mean wind
speeds (7.9 m/s) more typical of a commercial wind power plant.

unconventional axis reversal nevertheless gives the conventional
duration curve, as explained above in Methods. For both N = 3 and
N = 6 there are 84 different combinations of sites possible. The
colored lines in (b) plot the duration curves calculated from
empirical data: solid lines show the median durations and dashed
lines with shadings encompass the 5—95% ranges. The thin black
curves show the LDT model, again calculated assuming i.i.d. sites
and without adjustable parameters from the representative dis-
tribution in the histogram of Fig. 2. Horizontal “slices” of Fig. 5 for
chosen power thresholds (pg = 0.01, 0.05, 0.15) correspond to the
curves shown above in Fig. 4. According to the correlation co-
efficients listed in Table 1 our sites are not completely indepen-
dent, with two of the site-pairs having correlation coefficients in
excess of 0.2. Nevertheless, this small partial correlation seems
not to prevent a close correspondence of the LDT curves to the
median simulated wind-power data in Figs. 4 and 5. Comparing
the variances of the N-site arrays to the variances of the under-
lying individual sites also shows the partial correlation effects are

1.0
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1 1 1l
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Fig. 6. Comparison of empirical generation duration curve for median simulated wind
power from 6-site arrays with LDT model and with normal distribution of mean
u = 0.31 and standard deviation o = 0.34/+/6.

modest. If the individual sites were uncorrelated the array
variance should be equal to 1/N times the sum of the individual
variances. The variance of the 9-site array simulated wind power
(0.0154) is actually 7.6 times smaller than the average single-site
variance of the distribution in Fig. 2 (0.118), indicating that
its behavior might be closer to that of an array of 8 uncorrelated
sites.

LDT provides good estimates of the probability that mean
aggregate power Py is less than pg when pg is small; on the other
hand, when py is close to the mean, the Central Limit Theorem tells

us that, at least for large N, Pr(Py <pg) ~ ® [(,u fpo)/<0/\/ﬁ) ],

where @ is the cdf of the unit normal distribution and u and ¢ are
the mean and standard deviation of the distribution in Fig. 2. These
two distributions can be combined to approximate aggregated
wind-power probabilities over the full range. For example, Fig. 6
plots, for N = 6, the empirical duration curve, the Large De-
viations Theory (LDT) curve, and the normal distribution duration
curve, to illustrate how LDT provides a better model for the tail and
the normal distribution provides a better model near the mean. In
this case with N = 6 and a mean power of u = 0.31, the two models
cross at a power threshold of pp = 0.1: LDT is a better model for
lower thresholds and a normal distribution is a better model for
higher thresholds. The normal distribution curve plots
duration = 8760®[(u — po)/vs]. Fig. 7 plots the duration and power

o
=

wind power threshold pg

o
o
=

8760 1000 100 10 1

duration (hours/year)

Fig. 5. Generation duration curves for aggregate power from N sites (a) Linear axes. (b) Logarithmic axes: empirical (color) and LDT (assuming N i.i.d sites, black). Dashed lines and
shading enclose 5—95% range of durations from different combinations of N sites; solid color line is the median of the empirical values.
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Fig. 7. Locus of cross-over between LDT model and normal distribution curves for
various values of N. The LDT model is useful for parameter values below and to the left
of the curve.

thresholds po at which the LDT curve crosses the normal-
distribution curve for various values of N.

5. Conclusions

The model presented here provides a quantitative basis for un-
derstanding the increase in firm capacity with geographic diversity.
Our results demonstrate that aggregating wind plants can decrease
the occurrence frequency of low-power events more dramatically
than it decreases the magnitude of typical of variations around the
mean. For weakly correlated sites we find the occurrence of low-
power events in fact declines exponentially with N, in accord with
Large Deviations Theory. For comparison, according to the Bienaymé
Formula, the standard deviation of the mean decreases as 1/v/N.
Thus, to decrease the probability of aggregated wind power falling
below 1% of capacity by a factor of 20 for a 3-site array requires an
increase in the number of aggregated sites from 3 to 6, at least for
sites with characteristics similar to those investigated here. Cutting
the standard deviation by a similar factor would require increasing
the number of independent sites from 3 by a factor of 400, to
1200—almost certainly not possible.

This work may be useful in addressing planning for future
modifications to the electric power grid. For our data, year-to-year
variations in the simulated wind power distribution have only
modest effects on the rate function (see supplementary data,
Fig. S4). This may allow a grid planner to extrapolate the firm wind
power capacity available with a given reliability from limited his-
torical data. With regard to smoothing benefits in general, it is
important to note the important caveat that our results do not
calculate the time duration of individual low-wind-power events,
i.e. they do not distinguish between ten 1-h periods and one 10-h
period of low power.

The empirical results presented here evidence good agreement
with model results based on the assumption that the sites are in-
dependent. We presume that this agreement is a consequence of
the weak correlation of our widely spread sites. However, relating
the predictions of our model to the variability of real wind power
plants depends critically on the extent to which the number of
statistically independent sites is a good proxy for geographic di-
versity. The data we analyze inform speculation neither about the
performance of arrays of more-closely spaced wind plants nor
about achieving more than nine effectively independent sites
within the contiguous U.S.

Additional work is needed to determine to what extent the
methods and results presented above apply to situations with the

higher inter-site correlations that typically result from clustering
wind plants in areas with the best wind. Additional work is also
needed to extend the methods and results we present to estimate
the capacity value or ELCC of wind power, because they neglect the
correlation of wind generation with electrical load.
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