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ABSTRACT: Current methods of estimating the public health
effects of emissions are computationally too expensive or do not
fully address complex atmospheric processes, frequently limiting
their applications to policy research. Using a reduced-form model
derived from tagged chemical transport model (CTM) simulations,
we present PM2.5 mortality costs per tonne of inorganic air
pollutants with the 36 km × 36 km spatial resolution of source
location in the United States, providing the most comprehensive
set of such estimates comparable to CTM-based estimates. Our
estimates vary by 2 orders of magnitude. Emission-weighted
seasonal averages were estimated at $88,000−130,000/t PM2.5
(inert primary), $14,000−24,000/t SO2, $3,800−14,000/t NOx,
and $23,000−66,000/t NH3. The aggregate social costs for year 2005 emissions were estimated at $1.0 trillion dollars. Compared
to other studies, our estimates have similar magnitudes and spatial distributions for primary PM2.5 but substantially different
spatial patterns for precursor species where secondary chemistry is important. For example, differences of more than a factor of
10 were found in many areas of Texas, New Mexico, and New England states for NOx and of California, Texas, and Maine for
NH3. Our method allows for updates as emissions inventories and CTMs improve, enhancing the potential to link policy
research to up-to-date atmospheric science.

■ INTRODUCTION

Estimating the social costs of air pollution, i.e. the damages
imposed on human health and the natural environment, plays
an important role in policy research, such as benefit-cost
analyses of air quality laws1,2 and regulations;3,4 externality
analyses of energy and transportation systems;5−9 and climate
and energy technology assessments.10−13 PM2.5, particulate
matter having a diameter of 2.5 μm or less, is especially
important because PM2.5 is strongly associated with premature
mortality14−17 and accounts for more than 90% of the
monetized social costs.1,2,18 PM2.5 is a complex mixture of
various chemical compounds, sizes, and shapes. There are
active research efforts to understand where PM2.5 toxicity
comes from.19−21 Nevertheless, PM2.5 is currently regulated on
a mass concentration basis by the U.S. EPA22 because other
metrics do not have sufficient epidemiological and toxicological
evidence to support regulatory rule-making.23

A standard method of estimating the social cost of emissions
is using an impact pathway analysis.1,24,25 First, an air quality
model estimates changes in PM2.5 concentrations by comparing
a simulation with baseline emissions and another with
perturbed emissions. Next, changes in mortality rate are
estimated using concentration−response relations reported by
epidemiological studies. Then, the number of premature deaths
is estimated by applying the changed mortality rates to exposed

population. U.S. EPA usually publishes two separate mortality
estimates using two landmark series of epidemiological studies,
one from the American Cancer Society (ACS) studies14 and the
other from the Harvard Six Cities (H6C) studies15 due to pros
and cons of the two series.1,26 Finally, the premature deaths are
monetized with the value of statistical life (VSL), or people’s
willingness-to-pay to avoid the mortality risk. U.S. EPA
recommends25 using 8 M USD (in 2010 USD) for VSL after
adjusting it for income growth.
Marginal social cost ($/t), the social cost per tonne of air

pollutant emitted, is a useful metric because policy research
often deals with “marginal” changes in emissions and the social
cost of emissions can be conveniently estimated by multiplying
the amount of emissions by the marginal social cost. However,
one should be cautious when applying such estimates outside of
designed marginal ranges because nonlinear chemistry may
result in substantial errors.27 Intake fraction (ppm) is another
impact metric,28 defined as the mass fraction of the air pollutant
or its precursors emitted that are inhaled by an exposed
population.
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One of the major challenges in estimating social costs is to
address properly the complex atmospheric processes of
chemical reactions, transport, and removal associated with
PM2.5 and precursor gases, which determine population
exposures over hundreds or more from an emissions source.
Primary PM2.5, species directly emitted as inert particulate
matter such as elemental carbon (EC) and fugitive dust, poses a
substantial public health burden. However, secondary PM2.5,
species produced through photochemical processes in the
atmosphere from gaseous precursors, usually accounts for a
dominant (>80%) fraction of ambient PM2.5.

29,30 Inorganic
gasessulfur dioxide (SO2), nitrogen oxides (NOx), and
ammonia (NH3)are important precursors that form PM2.5 by
well-understood but nonlinear thermodynamic interactions.
For example, even when sulfate (SO4

2−) is a major component
of PM2.5, SO2 reductions may have little impact on PM2.5 due to
a sulfate-nitrate substitution phenomenon, a scenario common
enough to have regulatory significance.27,31,32 Certain volatile
organic compounds (VOCs) are also major precursors of
organic PM2.5, the understanding of which is relatively poor but
has substantially advanced in recent years.30,33

Current tools for linking changes in emissions to ambient
PM2.5 levels and, therefore, health effects often find limited
utility in policy research because they are either computation-
ally too expensive, too simplified, or too specific. Table 1
summarizes current methods. One is to use a state-of-the-
science chemical transport model (CTM),34−37 which divides
the atmosphere into a three-dimensional grid and calculates
complex atmospheric processes in each box at a high time
resolution (typically, ∼15 min). Built in order to advance the
understanding of atmospheric science as well as to inform air
quality policy-making, CTMs are the most sophisticated tools
to simulate air quality. Once CTMs estimate pollutant
concentrations, software tools such as BenMAP38 assist with
population exposure estimation and valuation. However,
running CTMs is computationally too expensive for many
applications. Therefore, CTMs are usually run only for limited
numbers of emissions scenarios and remain virtually out of
reach to a large research community that wants to explore
many policy and technological scenarios, perform rigorous
uncertainty analyses (e.g., Monte Carlo), and so on.
To overcome the limitations of CTMs, reduced form

models5,39−41 have been built using dispersion models such
as the Climatological Regional Dispersion Model (CRDM).42

CRDM translates emissions from one source county to PM2.5
concentrations at each downwind (or receptor) county using

annual and seasonal average meteorology and emissions. Using
CRDM, the Air Pollution Emissions Experiments and Policy
(APEEP) model41 and an updated version AP243 provide per-
ton social costs of six major pollutants for all (about 3100) U.S.
counties. It would require about 6000 CPU-y to generate
comparable spatial detail with a CTM using brute force
approaches (assuming 500 min per a simulation day34).
However, CRDM’s Gaussian dispersion approach44 may have
limitations for predicting the dispersion of long-range transport
pollutants like PM2.5 and precursors because it assumes
conditions at the point of emissions are held for all downwind
locations. CRDM also relies on simple assumptions for
secondary PM2.5 formations, which is complex and sensitive
to meteorological conditions.27,31 For example, in order to
estimate the formation of ammonium nitrate PM2.5 (NH4NO3),
it calculates potential maximum amounts with a stoichiometric
mass balance among related inorganic species and then simply
divides the amounts by four assuming it does not form in warm
periods.42 Moreover, CRDM’s prediction45 of organic PM2.5 is
out-of-date as recent research has shown that there is much
more secondary organic PM2.5 than previously thought and that
there are neglected-but-highly potent organic PM2.5 precur-
sors.33,46 Moreover, because the size of county varies
substantially across the nation, CDRM’s county-based spatial
resolution may be spatially inconsistent and too coarse in some
cases.
Another group is reduced form models47−49 built using

CTMs. Although their predictions should be comparable to
their parent CTMs, their parent CTM’s high computational
costs have typically limited the results in terms of resolution in
source sectors and source locations. For example, U.S. EPA’s
Response Surface Model (RSM)48 is such a model built using a
multidimensional kriging method based on CMAQ35 outputs.
The estimates derived from RSM8 are limited to 9 urban areas
and 1 nationwide average and to 12 emission sectors. Another
set of per-ton damages estimated by U.S. EPA50 using a CTM
with tagging is limited to national averages for 17 emission
sectors.
In order to overcome the limitations of current reduced-form

models, we recently developed a method that provides county-
scale impact metrics similar to CRDM or APEEP but derived
from a state-of-the-art CTM. Built from tagged CTM
simulations and generalized via regressions, this method, called
the Estimating Air quality Social Impacts Using Regression
(EASIUR) model,51 predicts marginal social costs and intake
fractions accurately like a CTM but at trivial computational

Table 1. Tools for Estimating the Social Costs of Air Pollutant Emissions

reduced-form models derived from

chemical transport models dispersion models (e.g., CRDM) chemical transport models EASIUR

air quality
modeling

state-of-the-art simplified similar to state-of-the-art similar to state-of-
the-art

computational
cost

very high low low low

spatial resolution detailed, flexible (typically 4−36 km) county-level subject to underlying CTM
simulations; typically, limited

36 km resolution;
similar to or finer
than county-level

temporal
resolution

detailed, flexible (typically ≤15 min) annual subject to underlying CTM
simulations; typically, annual

seasonal

user interface FORTRAN/UNIX environment, additional
work needed for exposure/valuation analysis

graphical user interface, county-based
lookup tables, regression equations

regression equations, lookup
tables

spatial lookup
tables

examples CAMx (ENVIRON, 2012), CMAQ (Byun and
Schere, 2006), WRF/Chem (Grell et al.,
2005), GATOR-GCMOM (Jacobson, 2001)

COBRA (U.S. EPA, 2011), APEEP/
AP2 (Muller and Mendelsohn, 2007;
Muller, 2011), Levy et al. (2009)

RSM (U.S. EPA, 2006), Fann et
al. (2009), Fann et al. (2012),
Buonocore et al. (2014)
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costs. In this paper, we present marginal and aggregate public
health costs estimated by EASIUR, compare to other estimates,
and discuss uncertainties and their implications.

■ METHOD

Reduced-Form Model Built From Tagged CTM
Simulation and Regression. The EASIUR model is
summarized here; a full description can be found elsewhere.51

First, we select two sets of 50 random locations, one for model
building and the other for out-of-sample evaluations, in a 148 ×
112 grid covering the contiguous United States. Next, we run a
CTM, Comprehensive Air Quality Model with extensions
(CAMx) version 5.41,34 with 2005 emissions and meteoro-
logical inputs developed and evaluated for a regulatory impact
analysis.52,53 Then, marginal social costs and intake fractions for
emissions at the 100 source locations were calculated by a
standard method used by U.S. EPA,25,54 using a concentration−
response relation from a recent ACS study,14 $8.6 M (in 2010
USD) for VSL (U.S. EPA’s recommended value25 adjusted to
2005 income level), and population and baseline mortality in
2005 derived from BenMAP.55 Although we based the chosen
concentration−response relation, VSL, and population, we
provide an easy method51 to adjust our estimates for these
factors over reasonable ranges. Finally, we derived regression
models with one set of 50 locations and did out-of-sample
evaluations against the other set of 50 locations. The models
were built for three different emission heights: ground-level,
150 m, and 300 m. Regression models parametrize marginal
social cost or intake fraction with population and atmospheric
variables such as temperature and atmospheric pressure.
We developed an “average plume method” to address the

challenge of describing population exposure to PM2.5 occurring
in downwind areas over hundreds of kilometers. An average
plume is a spatial distribution of downwind impacts empirically
derived by normalizing averaged PM2.5 concentrations
predicted by CAMx for our 50 training locations. Exposed
population for any given emissions species and source location
is expressed in regressions by convoluting the surrounding map
of population with the spatial distribution of this average plume,
essentially producing a population estimate weighted by
proximity to the pollution source.
Marginal and Aggregate Public Health Effects of

Primary PM2.5, SO2, NOx, and NH3. We estimated marginal
social costs and intake fractions at every cell of the 148 × 112
grid using the EASIUR models. In our analysis, primary PM2.5

indicates only inert primary species (mainly, elemental carbon
and fugitive dust) but not primary organic PM2.5, which is not

inert although it has been treated inert in most CTMs until
recently.33

In order to explore the magnitude of air quality public health
burden of the United States, we estimated social costs for 11
emissions categories, using 2005 emissions inventory53

(Emissions and detailed definitions of sectors are summarized
in Table S1): EGU (electric generating units); non-EGU (non-
EGU point sources and aircraft emissions); on-road (on-road
gasoline and diesel vehicles); other transportation (locomotive,
and marine vessel); nonroad (nonroad engines); foreign
(Mexico and Canada); area emissions (relatively small sources
that are not categorized as EGU or non-EGU); fugitive dust;
agriculture; fire (wild and prescribed fire); and biogenic
emissions. Height-specific marginal costs, which were interpo-
lated from EASIUR’s three elevations, were used for elevated
point emissions. Note that the size of emissions used in
estimating aggregate social costs is beyond the range where we
tested to find our marginal social costs stay constant51 and,
therefore, the estimates may result in some bias for secondary
species. However, they provide useful first-order estimates and
the associated uncertainties would be less than a factor of 2 (see
the Discussion).

■ RESULTS

Average Plumes. Here we present the average plumes that
represent a generic distribution of downwind impacts. Although
these are primarily an intermediate step in the EASIUR method
for estimating social costs, it is informative for users to be able
to visualize these distributions; many users are surprised at the
long-range impacts of PM2.5 emissions and precursor gases.
These plumes describe the expected spatial features of an air
pollutant’s dispersion and chemical conversion. To provide a
sense of scale, the average plumes are plotted in Figure 1 on a
map as if the emissions were originating from Pittsburgh and
prevailing winds were west to east. The weights indicate the
relative amount of the ambient PM2.5 mass created by emissions
in downwind grid cells; the sum across all grid cells is one. The
impacts of all four species are highly regional, easily spanning
more than 1000 km; the dashed lines encompass the region
that accounts for 80% of the resulting PM2.5. SO2 and NOx
emissions lead to more widely distributed impacts than primary
PM2.5 because they must be oxidized before forming PM2.5, a
process with a time scale on the order of hours or days. NH3
emissions also require chemical transformation to form PM2.5
but do so faster than SO2 or NOx; therefore, their impacts are
distributed only somewhat more broadly than primary PM2.5.
Consistent with findings from other studies,56,57 these spatial
distributions provide partial justification for EASIUR’s 36 km ×

Figure 1. Average plume weights of the four species. Each average plume was averaged from four seasons. Dashed lines indicate the region
encompassing 80% of the weights. To illustrate a sense of scale, they are placed on Pittsburgh, Pennsylvania. All the plumes are skewed to the right
from the aligned wind direction, which is caused by the Coriolis effect from the rotation of the Earth.
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36 km spatial resolution because a substantial fraction of
created ambient PM2.5 travels long distances in all cases. This is
also consistent with observations showing that long transport
secondary PM2.5 usually dominates air quality burden in urban
areas.29,30

However, an average plume does not directly translate into a
public health burden because it does not account for population
exposed to the plume, which highly depends on the location of
emissions source. A product of an average plume placed at a
certain location and population under the plume would
describe a distribution of relative public health burden. For
example, when such population-weighted average plumes are
placed in New York City, the source grid cell accounts for 65%
and 39% for primary PM2.5 and SO2, respectively, indicating the
potential value of increasing spatial resolution for highly
populated areas.
Marginal Social Costs and Intake Fractions. Marginal

social costs and intake fractions estimated by the EASIUR
models are presented in Figures 2 and S1, respectively.
Seasonal-average estimates, weighted by the amount of
emissions in the 2005 emissions inventory, are presented in
Figures 3a and S2a, which are $88,000−130,000/t PM2.5,
$14,000−24,000/t SO2, $3,800−14,000/t NOx, and $23,000−
66,000/t NH3. The average intake fractions are 1.2−1.7 ppm
for PM2.5, 0.18−0.32 ppm for SO2, 0.05−0.17 ppm for NOx,
and 0.31−0.85 ppm for NH3.
The maps show that spatial variability largely depends on the

population of the surrounding region. The effects of SO2 and
NOx emissions show less spatial variability than primary PM2.5
and NH3 because, having impacts that span broader regions,
they effectively average out more of the variability in
population. NH3 and primary PM2.5 impacts, in contrast,
more closely reflect smaller-scale variations in population
density. Seasonal variability is also distinct species by species.
Wintertime emissions generally have higher values because air

pollutants are less diluted vertically due to cold temperature.
Wintertime marginal effects are especially large for NOx and
NH3 because NOx and NH3 form ammonium nitrate PM2.5
more readily under cold temperatures. Though SO2 also shows
higher values in cold seasons in some areas, it generally shows
higher values in summer, since oxidation of SO2 to sulfate
PM2.5 is controlled by sunlight-driven photochemistry.
The rank ordering of the social costs and intake fractions

directly corresponds to the efficiency with which an emitted
species forms PM2.5. Recall that current epidemiology and
valuation do not distinguish some PM2.5 components as more
toxic than others. Primary PM2.5 emissions, by definition,
directly enhance PM2.5 concentrations and, therefore, have the
highest social costs. In contrast, SO2, NOx, and NH3 are all
PM2.5 precursors and must undergo one or more steps before
forming PM2.5. Therefore, the efficiency with which they form
PM2.5 depends on the fraction of SO2 and NOx that oxidizes to
sulfuric acid and nitric acid, respectively. For NOx and NH3,
thermodynamics also plays a role as one is generally limiting for
ammonium nitrate formation. Lastly, because ammonia has a
low molecular weight and is often the limiting factor for
ammonium nitrate formation,27,31,58,59 the social cost expressed
on a per ton basis is high.
Figure S3 presents the comparisons among three emissions

heights: ground-level, 150 m high, and 300 m high. Generally, if
emissions are released at a higher elevation nearby densely
populated areas, marginal social costs become lower, which
indicates that air pollutants impact nearby population areas less
strongly. However, marginal social costs are not much lower in
sparsely populated areas; in some remote locations, elevated
emissions have higher social costs than ground-level when
elevation enhances the transport of the pollutant to distant
urban areas. Because the lifetime of PM2.5 (several days) is
longer than the vertical mixing time scale for the planetary
boundary layer (∼1 day), vertical differences would generally

Figure 2. Marginal social costs for ground-level emissions of PM2.5, NOx, SO2, and NH3. PM2.5 represents inert primary PM2.5 species. Each point
presents the sum of public health costs that would be imposed at all downwind areas if marginal emissions were made at the point. Marginal social
costs are based on the relative risk of PM2.5 from the work of Krewski et al.,14 which is a 6% mortality increase per a 10 μg/m3 increase in PM2.5, and
$8.6 M (in 2010 USD) for the value of a statistical life. Winter is defined as January−March, spring, as April−June, summer, as July−September, and
fall, as October−December.
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smooth out relatively quickly on the regional scales under
consideration, resulting in social costs, especially for SO2 and
NOx, that are not very strong functions of emissions height.
National Air Quality Burden. Seasonal aggregate social

costs by species are presented in Figure 3b. Aggregate social
costs were $330 billion for primary PM2.5 (not including
primary organic PM), $320 billion for SO2, $210 billion for
NOx, and $160 billion for NH3. Intake fractions are presented
in Figure S2b. Although wintertime NH3 emissions are much
smaller than in other seasons (agriculture is the dominant
source of NH3), wintertime social costs are the largest due to
higher wintertime sensitivity of PM2.5. The sum of the social
costs of the four species is $1.0 trillion.
Sectoral social costs are presented in Figure 3c and broken

down by species. The top 81% comes from six sectors: 25%
from EGU, 14% from on-road, 12% from area sources, 11%
from agricultural ammonia, 9.8% from non-EGU, and 8.4%
from fugitive dust. Emissions from Mexico and Canada
represent 7.7% of the total.
Comparison to Other Studies. EASIUR estimates are

compared to those from three other studies in Figure 4
(numeric values are presented in Tables S3−S5). In order to
isolate differences to air quality modeling, social cost estimates
were harmonized to the best of our knowledge to account for

differences in factors such as VSL, concentration−response
relation, emissions unit (metric ton), population year, and
PM2.5 lag effects using methods described elsewhere.51 Intake
fractions are compared in Figure S4 with recommended values
from Humbert et al.60

In Figures 4a and b, EASIUR is compared with AP2,43 an
updated version of APEEP,40,61 county-by-county for ground-
level emissions. We chose AP2 reported using 2005 emissions
and population. Averaged over many locations, there is little net
bias between EASIUR and AP2 for SO2 and NOx, but we
frequently predict higher impacts stemming from primary
PM2.5 and ammonia. The high Pearson correlation coefficient
(0.81) for primary PM2.5 suggests that CRDM on which AP2 is
based predicts net exposures that are comparable to a full CTM
when averaged over long time periods and all downwind
locations. However, comparisons for secondary species show
much lower correlations, when the subsequent atmospheric
chemistry is more complex. For NOx, which is affected by both
gas-phase oxidation and thermodynamic phase partitioning, the
correlation between EASIUR and AP2 results is quite low, only
0.085, indicating very little agreement between the two models
as to which counties emissions tend to result in higher impacts.
Spatial comparisons presented in Figure 4b show that the
differences between EASIUR and AP2 are not randomly
distributed but have differing patterns in different regions. For
example, AP2 estimates social costs for NOx emissions that are
an order of magnitude lower than EASIUR in throughout the
New England states.
Figure 4c presents similar comparisons between EASIUR and

the work of Fann et al.50 Running CAMx with the same
emissions and meteorology as EASIUR, they reported per-ton
estimates for 17 sectoral emissions for three species (primary
PM2.5, SO2, and NOx). Due to limited sectoral resolution in our
emissions inventory, we regrouped their 17 sectors into 7
sectors: 5 sectors have the same definitions; our “area sources”
include residential wood combustion additionally; and “other
sources” include 11 industrial sectors. Emissions-weighted
averages are compared in Figure 4c, showing our 11 sectoral-
average estimates are mostly within a factor of 2. EASIUR’s
estimates were about 20% smaller for PM2.5. For SO2, EASIUR
produced 30% smaller on average but less variability among
sectors. For NOx, the most difficult species, EASIUR is
generally about 2 times larger but up to 3 times for nonroad
mobile sources.
Lastly, in Figure 4d, EASIUR is compared to marginal social

costs for one nationwide and nine urban areas from U.S. EPA’s
RSM.48,62 Although RSM was derived running CMAQ with
2015 emissions projected from the 2001 National Emissions
Inventory and 2001 meteorology, the two methods show
similar national average estimates except for PM2.5: for PM2.5,
RSM’s estimate is 2−3 times larger than EASIUR’s average; for
SO2, −10% to 90%; for NOx, −48% to −20%; and for NH3,
−52% to 24%. However, individual urban areas generally show
large differences for all species. RSM-based estimates for some
specific urban areas seem counterintuitive. For example, the
RSM estimate is 4.5 times larger for area source carbon and 11
times for industrial SO2 in Phoenix than in the combined New
York and Philadelphia (NY/Phi) area, although NY/Phi has 6
times larger population than Phoenix. This may be related with
the limitation of RSM design that cannot completely separate
the effects of emissions from one area on others.48

Uncertainties in EASIUR Estimates. There are three
major sources of uncertainty associated with EASIUR: air

Figure 3. Marginal and aggregate social costs of inorganic air
pollutants in 2005. PM2.5 consists of inert primary PM2.5 species
(mainly, fugitive dust and elemental carbon), which does not include
organic species.
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quality modeling, concentration−response relations, and VSL.
We present the uncertainties in Table S6, showing that air
quality modeling introduces generally similar or smaller
uncertainties than the other two factors, but it is larger for
some cases. The uncertainties are quantified and discussed as
follows.
Air quality modeling requires a detailed discussion about two

sources of uncertainty: errors in CAMx compared to reality and
errors in the regressions compared to CAMx. Although CTM’s

uncertainties are largely associated with key inputs such as
emissions and meteorology and less significantly with
atmospheric algorithms (at least for inorganic PM2.5),

63,64 it is
not feasible65 to quantify formally uncertainties surrounding
those factors due to measurement coverage and the sheer
number of parameters in CTMs. Instead, CTMs are generally
evaluated against ambient measurements, which are also
uncertain due to factors associated with measurement accuracy
and frequency. U.S. EPA’s evaluation52 reports fractional biases

Figure 4. Comparisons of EASIUR to other studies. Several factors such as VSL, concentration−response relation, and emissions unit (metric ton),
population year, and PM2.5 lagged effects were adjusted for all estimates the same as EASIUR to isolate the role of air quality modeling. (a)
Comparison of EASIUR to AP2,43 U.S. EPA’s sectoral estimates,50 and U.S. EPA’s Response Surface Model (RSM).62 Since AP2 provides county-
based estimates, EASIUR and AP2 are paired for every county for ground-level emissions. EPA’s RSM estimates (ranges cover area and mobile
sources), EPA’s sectoral averages, and AP2’s averages are compared to EASIUR’s averages (weighted by emissions in U.S. land area). EPA’s sectoral
averages and AP2’s averages are emissions-weighted averages. The Pearson correlation coefficients (r) between EASIUR and AP2 are presented on
the bottom right. (b) Spatial comparison to AP2.43 Estimates for ground-level emissions are compared. Yellow areas indicate where AP2 reported
negative values. (c) Comparisons to estimates for industrial, area, and mobile sectors derived from U.S. EPA’s tagged chemical transport model
simulations.50 (d) Comparisons to estimates for one national and nine urban areas derived using U.S. EPA’s RSM.62 EASIUR’s ground-level
estimates were compared to area and mobile sources and EASIUR’s 150 m elevation estimates to EGU and non-EGU sources. Ranges are used if
Fann et al.62 provided two estimates for area and mobile sources, and diamond markers are used if they provide one estimate. EASIUR’s emissions-
weighted national averages are compared to RSM’s national estimates.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.5b06125
Environ. Sci. Technol. 2016, 50, 6061−6070

6066

http://pubs.acs.org/doi/suppl/10.1021/acs.est.5b06125/suppl_file/es5b06125_si_001.pdf
http://dx.doi.org/10.1021/acs.est.5b06125
http://pubsdc3.acs.org/action/showImage?doi=10.1021/acs.est.5b06125&iName=master.img-004.jpg&w=484&h=451


and fractional errors, common evaluation metrics for
CTMs,65,66 that are averaged over regional areas (of 5−10
states) on a seasonal basis. CTMs may have less biases and
errors for predicting PM2.5 changes from “additional” emissions
than predicting total PM2.5 concentrations from all emis-
sions.67,68

Turning to the statistical regressions used by EASIUR, we
report both confidence intervals (CIs) and prediction intervals
(PIs) from the fitting procedures.51 Since CIs quantify errors in
the social cost when averaged over many locations, they are
appropriate for applications that are regional to national in scale
(e.g., covering 5−10 states). On the other hand, some
applications will require an uncertainty estimate for damages
from emissions in one specific location (or cluster of nearby
locations such as a metropolitan statistical area), which are
better represented by PIs.
Lacking a formal method, we suggested the uncertainties in

Table S6 based on our best judgment. Assuming the two
sources of uncertainty are independent, we combined them.
For regional-scale applications (covering emissions sources in
four or more states, or in areas covering 500 000 km2 or larger),
we averaged the absolute values of fractional biases (weighted
by the number of observations) reported in the CAMx
evaluation52 to represent the uncertainty of CAMx as percent
error. For the uncertainty introduced by regressions, we
calculated percent errors using the average upper bounds of
the 95th CIs relative to mean estimates in EASIUR
regressions.51 We combined both errors as if they are combined
as standard deviations and used the combined errors to express
upper bounds of uncertainty. For lower bounds, we calculated
by taking the same fraction relative to 100%; for example, a
+25% upper bound produces a lower bound of −20%.
Similarly, for subregional analyses (covering less than 500 000
km2), we used the average of fractional errors (weighted by the
number of observations) and the average upper bounds of the
95th PIs relative to mean estimates. For primary PM2.5, we used
only 50% of fractional biases and fractional errors for elemental
carbon, our proxy species for all inert primary PM2.5, because
the biases and errors are considered to be overpredicted due to
errors in emissions inventory69 rather than CTM itself.
Although this method is our judgment rather than formal
quantification, we believe that suggested values would
sufficiently represent the uncertainty.
For concentration−response relation, we suggest the range of

uncertainty that covers the 95% CIs of PM2.5 relative risks from
two land-mark epidemiological studies: the ACS studies14 and
the H6C studies H6C15 due to pros and cons of population
samples in two studies.1,26 Therefore, alternatively, EASIUR’s
estimates can be explored separately for each study, using the
log-linear concentration−response relation as described else-
where.51 Lastly, the 95% CIs of the Weibull distribution derived
based on 26 VSL studies are suggested25 for the uncertainty
surrounding VSL.

■ DISCUSSION
We presented marginal social costs and intake fractions for four
major inorganic air pollutants in the United States: inert
primary PM2.5, SO2, NOx, and NH3. These two metrics were
estimated using the EASIUR model, which were built using
regression on a data set generated by a CTM. The EASIUR
estimates are the most comprehensive set of marginal health
costs and intake fractions, having a spatial resolution of 36 km
× 36 km for source location, a temporal resolution of four

seasons, and three emission elevations (ground-level, 150 m
high, and 300 m high). Because the EASIUR model can be
rederived as CTMs and input data change in the future, it offers
a streamlined approach for incorporating up-to-date air quality
science into policy research.
Because EASIUR estimates are derived based on emissions

and meteorology in 2005, there are caveats to consider when
EASIUR is used for different years. First, the emissions baseline
matters to the marginal costs of SO2, NOx, and NH3 because
the availability of coreactants influences the formation of
secondary inorganic PM2.5.

27,31 In this context, it is important
to note that SO2 and NOx emissions have been rapidly
decreasing in recent years (e.g., from 2005 to 2014, SO2
emissions decreased by 66% and NOx by 39%)70 and are
expected to further decrease in coming years. Holt et al.59

showed that changed emissions from 2005 to 2012 would result
in 23−42% larger sensitivity for SO2 (due to more active
aqueous oxidation), 37−200% larger for NOx depending on
location (due to more nitrate PM formation in winter), and
28−38% smaller for NH3 (due to less acidic atmosphere).
Pinder et al.71 showed NH3 sensitivity would decrease by up to
30% in winter over the period of 2001−2020. A quantitative
assessment can also be inferred from the work of Fann et al.,50

which reported per-ton benefits of emissions reductions for 17
sectors for 2 periods, 2005 and 2016. After adjusting differences
in population and income level between two periods, changed
emissions from 2005 to 2016 resulted in 7% increase of
marginal benefits for SO2 and 26% increase for NOx on
emissions-weighted average. These studies suggest that social
cost estimates may change by up to a factor of 2, but usually
less, even for fairly large changes in baseline emissions.
Considering other uncertainties, the effect of changing
emissions baseline is not prohibitive but is worth noting.
Interannual variability in meteorology should have a minor

influence on these results, affecting seasonal or annual marginal
health effects generally less than 10%.72−74 Studies11,75−77

suggest that the influence of climate change on PM2.5
concentrations is negligible in short-term assessments and
relatively small even in the long term.
An important group of species, primary and secondary

organic PM2.5, which roughly account for a half of ambient
PM2.5, is not modeled for EASIUR due to “structural”
uncertainty of current CTMs. Although primary organic
PM2.5 has been treated inert in most CTMs so far,78,79 one
needs to be careful when applying our primary PM2.5 estimates
to primary organic PM2.5 because most primary organic species
were found to evaporate and undergo chemical reactions.33

Current CTMs also underpredict secondary PM2.5 by an order
of magnitude,78 suggesting a possibility of large biases in social
cost estimates of VOCs (e.g., those from RSM62 and APEEP/
AP243,61). Recent advancements in the understanding of
organic PM2.5 are being introduced to CTMs,33,80−82 and we
plan to do a separate study dedicated to modeling EASIUR for
organic species.
Though current reduced-form models including EASIUR

showed relatively good agreement for aggregate estimates (e.g.,
national or sectoral averages), our comparisons in Figure 4
show that they can produce substantial differences in
assessments dealing with secondary species like NOx and
NH3 and/or with a small spatial domain. Such assessments
would require a careful sensitivity analysis using multiple
models as a “conservative” way of exploring uncertainty for air
quality modeling beyond suggested EASIUR uncertainties. Our
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systematic comparisons in Figure 4 would be able to show in
what areas the community has large discrepancies.
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