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a b s t r a c t

Reanalysis data are attractive for wind-power studies because they can offer wind speed data for large
areas and long time periods and in locations where historical data are not available. However, reanalysis-
predicted wind speeds can have significant uncertainties and biases relative to measured wind speeds. In
this work we develop a model of the bias and uncertainty of CFS reanalysis wind speed than can be used
to correct the data and identify sources of error. We find the CFS reanalysis data underestimate wind
speeds at high elevations, at high measurement heights, and in unstable atmospheric conditions. For
example, at a site with an elevation of 500 m and hub height of 80 m, a CFS reanalysis wind speed of 8 m/
s is 0.2 m/s higher to 1.3 m/s lower than the measured wind speed. We also find a seasonal bias that
correlates with surface roughness length used by the reanalysis model during the spring season. The
corrections we propose reduce the average bias of reanalysis wind speed extrapolated to hub height to
nearly zero, an improvement of 0.3e0.9 m/s. These corrections also reduce the RMS error by 0.1e0.4 m/s,
a small improvement compared to the uncorrected RMS errors of 1.5e2.4 m/s.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Reanalysis models interpolate in time and space between his-
torical meteorological measurements and estimate the values of
unmeasured quantities. Reanalysis data are attractive for wind-
power studies because they can offer wind speed data for large
areas (sometimes the entire world) and long time periods and in
locations where historical data are not available. The current gen-
eration of reanalysis models, the Modern-Era Retrospective Anal-
ysis for Research and Applications (MERRA), Climate Forecast
System (CFS), and the ECMWF Reanalysis (ERA-Interim) estimate
meteorological variables with spatial resolutions of 0.313� at the
equator (0.7� for ERA) [1e3]. They estimate wind speeds at various
heights: all offer 10 m above ground level and pressure levels;
MERRA offers 50 m above ground as well. These models also esti-
mate variables useful for modeling the atmospheric stability.

Previous research has used reanalysis data for large-scale ana-
lyses of wind power, such as wind resource assessment [4,5], long-
term trends in wind speed [6,7], daily to yearly variability [8e10],
and, extreme wind events [11,12]. However, the spatial resolutions
rey School of Public Affairs,
of current reanalysis models limit their accuracy in areas with
complex terrain [13] and the temporal resolutions limit their ac-
curacy for periods less than one day. Also, the reanalyzes are likely
to be less accurate in areas with few meteorological stations, such
as high latitudes and parts of Africa and the Southern Hemisphere.

Many studies have addressed some of the limitations of rean-
alysis data by dynamically downscaling the data using physics-
based models with better spatial and temporal resolution. For
example, the U.S. National Renewable Energy Laboratory commis-
sioned two large studies based on dynamically-downscaled wind
[14,15]. However, dynamic downscaling requires significant
computing time. Also, dynamically-downscaled models may be
only slightly more accurate than reanalysis models for applications
such as wind resource assessments and long-term (month to year)
average wind speeds. Sharp et al. say “In some respects, raw CFS
reanalysis data is also very close to the results obtained when using
downscaled data, although accuracy appears to vary dependent on
location.” [16].

In this paper, we characterize differences between instanta-
neous wind speeds from CFS reanalysis and 1-h average historical
wind speeds greater than 2 m/s at heights of 10e100 m from sites
in the U.S. Great Plains. Our goal is to quantify these differences
and develop corrections to improve the accuracy and precision of
reanalysis data without dynamic downscaling. We develop a
model of the bias and uncertainty of CFS reanalysis wind speed
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than can be used to correct the data. The model we propose also
quantifies the contributions of various sources of error, which may
suggest improvements to the reanalysis model. These results are
specific to the CFS reanalysis and the U.S. Great Plains, but we
expect the underlying methods will be applicable to other
reanalyses.

2. Method

We use data from the CFS reanalysis [2] to calculate horizontal
wind speeds at typical wind turbine heights using two different
extrapolation methods. We then fit linear mixed-effects (LME)
models to the data. Those LME models both allow us to correct
reanalysis wind speeds for systematic biases and uncertainties, and
to quantify the sources of both. Linear mixed-effects models, which
are also called hierarchical, multilevel, or random-effects models
estimate a model that allows for both between-site and within-site
variation [17]. We fit the LMEs to the data described in Sections 2.1
and 2.2 using the “nlme” package, version 3.1e120 for R, release
3.1.3 [18,19].

LME models have not previously been applied to wind speeds,
although one study develops a hierarchical model (a synonym for
LME) of the distribution of extreme wind speeds [20]. Several
studies statistically downscale wind speeds measured or modeled
at lower spatial resolutions using Bayesian hierarchical models,
which are closely related to LME models [21,22]. Finally, several
studies have used LME models to study the effects of policies on
wind energy [23,24] or the effects of wind farms on wildlife [25].
Fig. 1. Locations of the measuremen
2.1. Empirical data

We validate the extrapolated reanalysis wind speeds against
historical measurements from the U.S. Great Plains. These historical
data are 1-h average horizontal wind speeds measured at heights
between 10 m and 100 m above ground level (AGL). These mea-
surements are taken at 162 sites shown in Fig. 1, with base eleva-
tions of 133e1463 m above mean sea level (AMSL). The data were
collected by various government agencies in eleven U.S. states (MN,
ND, OK, IA, WI, NE, MO, SD, CO, KS, IL) and compiled into a single
database by the University of North Dakota Energy & Environ-
mental Research Center, which performed quality control on the
data [26]. Many of the measurements were collected by anemom-
eters attached to existing telecommunications towers, others were
collected by temporary 20-m towers from state and federal
anemometer loan programs.We randomly divide themeasurement
sites into a “training” group of 109 sites and a “validation” group of
53 sites listed in the online Supporting Information (see Table 1).
We exclude certain periods of bad data from some sites listed in the
online Supporting Information (see Fig. 2).

Some towers have two anemometers at the same measurement
height; in those cases we select the maximum of the two measured
wind speeds at each time step on the assumption that the lower
measurement is partially shadowed by the tower. We exclude data
from sites within approximately 3 km of mountains or significant
terrain features, sites with inhomogeneous fetch within 1 km (as
judged from satellite photos), and sites within 1 km of trees or
buildings.
t sites in the U.S. Great Plains.



Table 1
Summary statistics for measured data used in this analysis. Each sampling site may have multiple time series collected at different measurement heights.

Sampling sites Time series Base elevation (AMSL) Measurement height (AGL) Mean wind speed

Training 109 227 133e1463 m 10e100 m 3.4e9.9 m/s
Validation 53 110 254e1390 m 10e80 m 4.4e8.8 m/s

Fig. 2. Temporal coverage of measured wind speed data, grouped by state. In this paper we are concerned with comparing these measured data with corresponding periods of
reanalysis data.
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2.2. Reanalysis data

The reanalysis data we use in this work come from the CFS
reanalysis, which uses numerical weather prediction models to
interpolate meteorological measurements to a grid of locations
[2]. Specifically, we analyze 10-m horizontal wind speed with a
temporal resolution of 1 h (analysis and 1e5 h forecasts) for the
period 1995e2008 and a spatial resolution of ~35 km at the
equator (T382 grid). These wind speeds are state variables, which
represent instantaneous samples of wind speed [27]. We discuss
the consequences of comparing instantaneous wind speeds to 1-
h averages of measured wind speed in Section 3.2. When the
locations of historical measurement sites (the towers) do not
coincide with the reanalysis data grid points we bilinearly
interpolate the reanalysis variables to the historical site location
using the 4 nearest grid points. The CFS raw data are well-fitted
by Weibull distributions with scale parameters in the range
4.1e5.9 and shape parameters in the range 2.0e2.4. These shape
parameters are within the commonly-observed range of 1.6e2.4
[28].

The CFS reanalysis model we analyze is similar to the MERRA
model, which is commonly used in wind power studies because
one of its standard outputs is wind speed at 50-m height. However,
we expect MERRA would yield results similar to those we find in
this work because the two models are closely-related; Sharp et al.
say, “CFSR and MERRA are based on the same set of observations
and use similar models to extrapolate these data over space and
time, to the same temporal scope.” [16].
2.3. Extrapolating reanalysis wind speed to hub height

We analyze reanalysis wind speed extrapolated from 10-m
height using two commonly used methods: a logarithmic vertical
wind speed profile with surface roughness length z0 taken directly
from the reanalysis model [29] and a power-law vertical profile
with an exponent inferred from reanalysis wind speeds above and
below the desired height [12,30,31]. We attempted to interpolate
reanalysis wind speeds from the three lowest model layers
assuming a logarithmic profile, but did not use that approach
because it could interpolate only speeds that increased mono-
tonically with height. The reanalysis data contain periods of speeds
that do not increase monotonically with height, which is physically
realistic in stable atmospheric conditions [32]. However, we were
able to associate only some of those periods with stable conditions.
2.3.1. Neutral logarithmic profile with reanalysis surface roughness
The neutral logarithmic vertical wind profile is a function of

surface roughness z0 and wind speed u at some reference height
zref, typically 10 m [33]. This vertical profile gives wind speed at an
arbitrary height u(z) as:
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uðzÞ ¼ u
�
zref
� lnðz=z0Þ
ln
�
zref
.
z0
� (1)

We use the location- and time-specific values of the surface
roughness length z0 from the reanalysis data (see, for example,
Fig. 6), as used by Huang et al. [29].

2.3.2. Power law profile
The power-law vertical wind profile is a function of wind speed

u at some reference height zref, typically 10 m, and a power-law
exponent a [33]. This vertical profile gives wind speed at an arbi-
trary height u(z) as:

uðzÞ ¼ u
�
zref
� z

zref

!a

(2)

Some previous work has estimated varying values of a from
wind speeds at different heights [30,31]. We estimate a at each
hour and each site similarly, using the closest reanalysis wind
speeds above uhi and below ulo the desired height according to the
following formula:

a ¼
ln
�
uhi
ulo

�

ln
�
zhi
zlo

� (3)

In the cases that zlo is lower than 10 m above ground level, we
substitute the reanalysis wind speed at 10 m u10. We exclude
extrapolated wind speeds less than 0 m/s and greater than 30 m/s
because they are physically-unrealistic artifacts from the process of
inferring the exponent a.

3. Results

We present two related results: First, we fit LME models to
reanalysis wind speed extrapolated to hub height and use those
models to correct for biases and uncertainties in the reanalysis data.
Second, we fit similar models to raw reanalysis wind speed outputs
in order to analyze the sources of bias and uncertainty in the
reanalysis model.

3.1. Bias and uncertainty correction for reanalysis wind speed at
hub height

We propose a LMEmodel correct the biases and uncertainties in
the reanalysis-predicted wind speed. The general model, given in
(4), estimates measured horizontal wind speed at a given site as a
function of reanalysis-predicted wind speed, month of year, alti-
tude of the site, and measurement height. We fit this model to data
from the “training” data set described in Section 2.1 and then test
the fitted model by using it to correct data from the “validation”
data set (see Table 1).

yi;j ¼ b1…5xi;j þ b6hj þ b7zj þ aj þ ei;j
aj � N ð0; saÞ
ei;j � N ð0; seÞ

(4)

with the following fixed effects:

yij measured wind speed at site j and time i [m/s]
xij reanalysis-predicted wind speed at site j and time i [m/s]
Separate groups for months Mar., Apr., May, June, and one
group for JulyeFeb.
hj altitude of site j [m above sea level]
zj measurement height of site j [m above ground level]

and the following random effects:

aj between-site error, drawn from normal dist. with mean 0 and
std. dev. sa

εij Residual error, drawn from normal dist. with mean 0 and std.
dev. sε

Previous studies have used several methods for extrapolating
reanalysis wind speed to hub height and have investigated wind
speeds averaged over different periods, so we fit families of models
to data with different extrapolation methods and averaging pe-
riods. We fit models to wind speeds averaged over 1, 3, 6, 9, 12, 18,
and 24 h and reanalysis wind speeds extrapolated vertically using
twomethods (described in Section 2.3), for a total of 14 models. We
fit these models to all measurements higher than 10 m above
ground level and wind speeds greater than 2 m/s. The un-
extrapolated 10-m wind speeds are qualitatively different: the ra-
tio of measured to reanalysis wind speed is consistently greater
than 1 for the 10-m data and consistently less than 1 for the
extrapolated data. Fitted models for 10-m data are included in
Section 3.2. We exclude reanalysis-predicted wind speeds less than
2 m/s in order to fit the model using Ordinary Least Squares (OLS)
regression. The wind speed data are censored at 0 (i.e. wind speeds
cannot be lower than zero), which biases OLS estimates. Censored
LME regression gives unbiased estimates but is orders of magnitude
more computationally intensive than OLS regression. We validate
the approach of using OLS excluding lowwind speeds by using both
methods to fit models to a random subset of the data and con-
firming that they estimate the same parameter values.

In Table 2 we present coefficients of the model fitted to 6 h-
average wind speeds. These models have a conditional R2 value of
approximately 0.66, which means the model explains 66% of the
variance of the data [34]. This value is similar to R2 values estimated
in previous studies for regression models fit to hourly reanalysis
data from individual sites. Lil�eo et al. calculate individual-site R2

values of 0.40e0.80 for CFS reanalysis data and 0.56e0.78 for
MERRA reanalysis data at 0.995 sigma level (~42 m above ground).
Carvalho et al. estimated an average R2 value of 0.61 for CFS rean-
alysis data 60e80 m height above ground [13]. The Crown Estate
estimates individual-site R2 values of 0.69e0.93 for MERRA rean-
alysis data at 50-m height [35]. Our results compare well to these in
spite of the fact that we estimate a more general model for many
sites that explains some of the variation between sites.

The fitted coefficients in Table 2 that relate reanalysis to
measured wind speed (b1 e b5) are larger than the slope of 0.80
estimated previously by Rose and Apt for quarterly wind energy
[10]. There are two differences between the model in (4) and the
model proposed by Rose et al. that explain the difference in esti-
mated slopes. First, wind energy is proportional to wind speed
squared for the typical range of wind speeds and the slopes co-
efficients b1 e b5 are less than 1, so we expect the previously-
estimated slope for wind energy to be smaller than the slopes
estimated for wind speed. Second, the model in (4) includes terms
for site elevation and measurement height that explain more of the
bias than the single sloe term in the previously-proposed model.

In Fig. 3 we plot the same model overlaid on the corresponding
data for the months JulyeFebruary: the left figure plots measured
vs. reanalysis wind speed for all sites with overlaid with the model
calculated for average values and the right figure plots data for a
single site overlaid with models calculated for average and site-
specific conditions. These results are representative of the results
fitted to other averaging periods; the detailed results are given the



Table 2
Coefficients for the model in (4), fitted to data averaged over 6 h. All coefficients are statistically significant at a < 1% level.

Log, model roughness (z0) Power-law, inferred alpha (a)

Slope JulyeFeb (b1) 0.92 0.89
March (b2) 0.96 0.94
April (b3) 0.97 0.97
May (b4) 0.99 0.98
June (b5) 0.95 0.93
Elevation (b6) 1.40e-3 (m/s)/m 1.61e-3 (m/s)/m
Meas. height (b7) 0.011 (m/s)/m 0.017 (m/s)/m

Fig. 3. Measured vs. reanalysis-predicted 6-h average wind speeds from JulyeFebruary, extrapolated with log profile and modeled roughness. Left: data from all sites at mea-
surement heights greater than 10 m. Right: data from site 158, with a 1463-m elevation and 50-m measurement height. Both are overlaid with a solid red line representing the best-
fit model for average site characteristics and a dashed line showing a 1:1 relationship. The single-site data on the right is also overlaid with a solid black line representing the model
that includes adjustments for the elevation and measurement height of that specific site. (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this article.)

S. Rose, J. Apt / Renewable Energy 94 (2016) 157e165 161
online Supporting Information.
The fitted models in Table 2 reveal that the reanalysis wind

speeds generally under-predict measured wind speeds in the
typical operating range and typical locations of wind turbines in the
U.S. Great Plains. The under-prediction increases with site altitude
and turbine hub height and during the Spring (MarcheJune) but
decreases with wind speed. For example, at a site with an elevation
of 500 m and a hub height of 80m, a reanalysis wind speed of 4 m/s
under-predicts by an average of 0.3e1.4 m/s, depending on the
season and vertical profile used for extrapolation. However, a
reanalysis wind speed of 14 m/s can range from an average over-
prediction of 0.8 m/s to an average under-prediction of 1.2 m/s.
Finally, Fig. 3 shows that the model fits the data better at moderate
speeds (e.g. 3e8 m/s) where the data density is high than at high
speeds (e.g. > 14 m/s) where the data density is low. However, a
poor fit at wind speeds higher than approximately 14 m/s is not
important for wind power applications because typical turbines
reach their maximum rated power output in that speed range.

The model given in Eq. (4) can be used to correct for the biases
and reduce the uncertainties in reanalysis-predicted wind speed.
For example, the correction for log-extrapolated 6-h average wind
speed in April at 1000 m above sea level and 80 m above ground is
0.97x þ (1000 � 1.40 � 10�3) þ (80 � 0.011), where x is the
reanalysis wind speed extrapolated from 10-m to hub height. To
quantify the effect of this correction, we use the model in (4)
to calculate “corrected” wind speed from raw reanalysis data
extrapolated to the desired measurement height and then calcu-
late the bias (reanalysis minus measured speed) and root-mean
squared error (RMSE) relative to actual measured wind speed at
the same height. The models are fitted to the “training” data set but
the bias and RMSE are calculated with the “validation” data set.
Fig. 4 and Fig. 5 show the effects of this correction: it reduces the
mean bias to nearly zero, but reduces the RMSE only modestly.

Fig. 4 shows that the LMEmodel we propose is quite effective in
reducing the average wind speed bias to nearly zero: the uncor-
rected biases are�0.9 to�0.4 m/s, but the biases after applying our
model are�0.1e0.2 m/s. Fig. 5 shows that the RMSE decreases with
longer averaging periods, but applying the correction we propose
decreases RMSE for all averaging periods. The RMSE is higher for
higher ranges of wind speed, but this is not surprising because the
RMSE units are absolute, rather than relative. Together, these re-
sults show that our proposed model significantly improves the
accuracy of reanalysis-predicted wind speed.

3.2. Sources of bias and uncertainty in 1-hr reanalysis data at 10-m
height

The model we propose in (4) offers a way to correct for bias and
uncertainties in the reanalysis wind speeds, but it also quantifies
the sources of bias and uncertainty. Identifying those sources is
may offer insights into the way the CFS reanalysis models wind
speed in the boundary layer. In order to analyze the sources of bias
and uncertainty independent of the vertical extrapolation method,
we fit the slightly different LME model given in (5) to un-
extrapolated 10-m wind speeds greater than 2 m/s, which are the
raw output of the reanalysis model.

yi;j ¼ b1…5xi;j þ b6hj þ b7…9Jþ aj þ ei;j
aj � N ð0;saÞ
ei;j � N ð0; seÞ

(5)
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This model given in (5) removes the term for measurement
height z because all measurements have the same height and
because it is not statistically significant in the model. However, it
adds an additional termJ related to atmospheric stability, to assess
whether stability contributes significantly to wind speed error. This
term J, defined in (6), is a standard correction for atmospheric
stability in the logarithmic vertical wind speed profile:
J ¼

8>>>>>>><
>>>>>>>:

2 ln
�
1þ a
2

�
þ ln

�
1þ a2

2

�
� 2 arctanðaÞ þ p=2 if � 10 � z

L
<0ðunstableÞ

�5
z
L

if 0 � z
L
<0:5ðstableÞ

�
�z
L
þ 0:66

�z
L
� 14:3

�
exp

�
�0:35

z
L

�
þ 9:52

�
if 0:5 � z

L
<7ðvery stableÞ

(6)
where a¼ (1e16z/L)1/4 [32]. It consists of three different sub-terms
for unstable, stable, and very stable atmospheric conditions. There
is no explicitly defined sub-term for neutral stability, where the
correction is zero, because neutral stability corresponds to z/L ¼ 0.
The “stable” term yields a correction of 0 when z/L ¼ 0. The online
Supporting Information gives details of the calculation of the
Obukhov length L from reanalysis data.

We fit the model given in (5) to 1-h average wind speeds
measured at 10-m height and summarize the fitted coefficients in
Table 3.

The most important terms in the model in (5) are the “slope”
parameters b1 e b5, which represent the ratio of measured wind
speed to reanalysis wind speed. The fitted values in Table 3 show
that the reanalysis model consistently underestimates measured 1-
h average wind speeds at 10-m height and that the underestimate
is larger in Spring months (MarcheJune). The slopes range from
1.17 for non-Spring months (b1) to 1.35 for the month of May (b4).
Although no previous studies we are aware of have explicitly re-
ported the slope of fitted regression models, several studies have
shown results consistent with the positive slope like we find for 10-
m data. Carvalho et al. write, “There seems to be a somewhat linear
variation of the bias [where bias is reanalysis minus measured
speed] with the measured wind speed: for low wind speeds the
bias tends to be positive and high, gradually diminishing with
increasing measured wind speed and for strong wind speeds the
biases are now negative and again high in value.” [13] Cannon et al.
plot a linear least square fit that shows the same trend we find, but
do not report the fitted model parameters [12].

We test several hypotheses to explainwhy 10-m reanalysis wind
speeds underestimate measured wind speeds. First, the measured
wind speeds are averaged over 1 h, but the reanalysis wind speeds
to which we compare them are “state variables” (i.e. instantaneous
samples) [27]. If this were a source of error, it should decrease as
both data sets are averaged over longer periods, but we fit similar
models to data averaged overmuch longer periods (daysemonths)
and found consistent underestimation. Second, Carvalho et al.
suggest that the simplified terrain used in reanalysis models can
cause underestimation of wind speed. To test this hypothesis, we
added two predictor variables to the model in (5): one for site
elevation relative to the average elevationwithin a 3-km radius and
one for standard deviation of terrain elevations within 3 km, but
the coefficients for those variables were not statistically significant.
Third, the underestimation of measuredwind speeds has a seasonal
pattern that may be caused by the surface roughness lengthmodels
used in the reanalysis data. Fig. 6 shows that the increase in ratio of
measured to reanalysis wind speed coincides with the springtime
increase in surface roughness length used in the reanalysis model.
We estimated surface roughness lengths from measured wind
shear (speeds at various measurement heights) assuming a loga-
rithmic vertical profile, but the values we estimated were too noisy
to meaningfully compare to the roughness lengths from the rean-
alysis model.
The “elevation” parameter b6 is marginally statistically signifi-
cant (p ¼ 0.047) and the magnitude is small, which suggests that
bias in reanalysis wind speed is not strongly influenced by effects
correlated with elevation. For example, the fitted coefficient of
2.53 � 10�4 (m/s)/m means that the reanalysis data underestimate
wind speed by an average of 0.38 m/s at the highest-elevation site
we analyze (1494 m). However, the coefficient for the elevation
parameter estimated from vertically-extrapolated wind speeds in
Section 3.1 is statistically significant (p z 0) and the magnitude is
almost an order of magnitude larger (1.42�10�3) To understand
why, we re-fit the model in (5) to 10-m data without the terms for
stability (b7 e b9) in order to make the estimated coefficients more
comparable to the model in (4). Fitting this reduced model to the
10-m data gives an estimate of 6.0 � 10�4 (m/s)/m for the elevation
coefficient b6, which is closer to the estimates for extrapolated data
in Table 2. Sharp et al. find that reanalysis errors are larger for sites
above 600 m because average wind speed increases with altitude
[16]. We also find that reanalysis errors are larger for sites with
higher average measured wind speeds, but we do not find a clear
relationship between average reanalysis wind speed and error.

We fit separate coefficients for each of the three sub-terms ofJ:
b7 for unstable conditions, b8 for stable conditions, and b9 for very
stable conditions. The coefficients for the unstable (b7) sub-term is
statistically significant and the magnitude if relatively large. For
example, the fitted value of b7 (0.666) means that the reanalysis
wind speed underestimates measured wind speed by approxi-
mately 1.6 m/s in very unstable (z/L ¼ �10) conditions. This sug-
gests that the reanalysis model does not model wind speeds
accurately in unstable atmospheric conditions. This is consistent
with our finding that the solar zenith angle [36] lagged 3 h behind
local time is a statistically-significant predictor variable. The coef-
ficient for the stable (b8) sub-term is statistically significant (see
Table 3), but the magnitude is small so we do not think the rean-
alysis model is significantly inaccurate in stable (and neutral)
conditions.

4. Conclusions

This paper characterizes the differences between CFS reanalysis
and measured wind speeds to correct for biases and uncertainties
in the reanalysis data. Previous studies calculate measures of error
(e.g. RMSE) and correlation between reanalysis andmeasured wind
speed, but do not offer away to correct the errors. Previous research
by Rose and Apt [10] proposes a simple linear model to correct
biases in quarterly wind power and a novel correction for errors



Table 3
Coefficients for the model in (5), fitted to 1-h average data measured at 10-m height.

Coefficient Std. err. DF t-value p-value

Slope JulyeFeb (b1) 1.17 1.00e-3 1.22e6 1173 0
March (b2) 1.26 1.31e-3 1.22e6 961 0
April (b3) 1.30 1.40e-3 1.22e6 925 0
May (b4) 1.35 1.48e-3 1.22e6 915 0
June (b5) 1.30 1.65e-3 1.22e6 786 0
Elevation (b6) 2.53e-4 (m/s)/m 1.25e-4 56 2.03 0.047

J Unstable (b7) 0.666 8.98e-3 1.22e6 74.2 0
Stable (b8) �0.0616 4.10e-3 1.22e6 �15.0 0
Very stable (b9) �2.08e-3 3.94e-3 1.22e6 �0.53 0.60

Fig. 4. Mean bias (defined as reanalysis minus measured) of reanalysis-predicted wind speed, with and without correction from the model we propose. Dashed lines plot bias
without correction and solid lines plot bias after correction in Eq. (4) has been applied.

Fig. 5. RMS error of reanalysis-predicted wind speed, with and without correction from the model we propose. Dashed lines plot bias without correction and solid lines plot bias
after correction in Eq. (4) has been applied.
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Fig. 6. The ratio of measured to reanalysis-predicted wind speeds at 10-m height as a function of day of year (top) and typical surface roughness length profile used in the reanalysis
model (bottom). The vertical dashed lines show the start and end dates of the month-specific coefficients b2 e b5.
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introduced by vertically extrapolating wind speeds in unstable and
stable atmospheric conditions. In the current paper we propose
more sophisticated linear models that take into account altitude,
measurement height, and seasonal variations in the relationship
between reanalysis and measured wind speeds.

The corrections we propose reduce the average bias of rean-
alysis wind speed extrapolated to hub height by 0.3e0.9 m/s, a
large improvement that makes the average bias of the corrected
wind speeds near zero. The corrections we propose also reduce the
RMS error by 0.1e0.4 m/s, which is a small improvement. Averaging
reanalysis wind speeds over several hours further reduces the RMS
error, but the errors are still large. For example, the RMS error for
24-h averagewind speeds after our corrections have been applied is
still 1e1.5 m/s, a significant fraction of the mean wind speed.

The fitted coefficients of the our model show that the reanalysis
model under-predicts wind speeds more at higher elevations (e.g.
1.4e1.6 m/s at 1000 m above sea level) and more at higher mea-
surement heights (e.g.1.1e1.7m/s at 100m above ground level). For
example, the correction for log-extrapolated 6-h average wind
speed in April at 1000 m above sea level and 80 m above ground is
0.97x þ (1000 � 1.40 � 10�3) þ (80 � 0.011), where x is the rean-
alysis wind speed extrapolated from 10-m to hub height. These
results are relatively consistent for two different methods of
extrapolating reanalysis wind speeds 10 m to higher heights above
ground level, though we estimate a smaller magnitude of under-
prediction using the raw 10-m wind speeds output by the
reanalysis.

The coefficients of our fitted models show that the ratio of
measured to reanalysis wind speeds is higher during the Spring
season than the rest of the year. For the reanalysis data extrapolated
to hub height, where the ratio of measured to reanalysis wind
speeds is less than 1, the ratio becomes nearer to 1 during the
Spring. For the un-extrapolated reanalysis data where the ratio is
greater than 1, the ratio grows farther from 1 in the Spring. We
show this seasonal pattern is correlated with the springtime in-
crease in surface roughness lengths used by the reanalysis model.
However, surface roughness lengths we inferred from the
measured wind speed data were too noisy to fit a function relating
them to the modeled roughness lengths.

Finally, the coefficients of our fitted models also show that the
reanalysis wind speeds under-predict measured wind speeds in
unstable atmospheric conditions. The magnitude of this under-
prediction as a function of the z/L stability criterion is consistent
with the stability correction for unstable conditions proposed by
Paulson [37]. In cases where z/L cannot be estimated, we find that
the solar zenith angle, lagged 3 h behind local time, can be
substituted as a predictor variable in the model.
4.1. Extensions of this work

This work compares wind speeds measured over relatively flat,
homogeneous terrain in the U.S. Great Plains to data from the CFS
reanalysis. The Great Plains region we analyze is an important one,
because it contains the majority of wind power development in the
United States. However, a similar analysis of other important wind-
power regions, such as the plains of northern Europe, would help
validate the model. A similar analysis comparing wind speeds
predicted by a different reanalysis model, such as MERRA, would be
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useful to determine whether different reanalyses use better sub-
models of the phenomena that we find affect the bias and
uncertainty.
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