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Correction for “Quantifying the hurricane risk to offshore wind
turbines,” by Stephen Rose, Paulina Jaramillo, Mitchell J. Small,
Iris Grossmann, and Jay Apt, which appeared in issue 9, Feb-
ruary 28, 2012, of Proc Natl Acad Sci USA (109:3247–3252; first
published February 13, 2012; 10.1073/pnas.1111769109).
The authors note that on page 3251, right column, Equations

6 and 8 appeared incorrectly. The corrected equations appear
below. These errors do not affect the conclusions of the article.
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The U.S. Department of Energy has estimated that if the United
States is to generate 20% of its electricity from wind, over 50 GW
will be required from shallow offshore turbines. Hurricanes are a
potential risk to these turbines. Turbine tower buckling has been
observed in typhoons, but no offshore wind turbines have yet been
built in the United States. We present a probabilistic model to esti-
mate the number of turbines that would be destroyed by hurricanes
in an offshorewind farm.We apply this model to estimate the risk to
offshore wind farms in four representative locations in the Atlantic
and Gulf Coastal waters of the United States. In the most vulnerable
areas now being actively considered by developers, nearly half the
turbines in a farm are likely to be destroyed in a 20-y period. Reason-
able mitigation measures—increasing the design reference wind
load, ensuring that the nacelle can be turned into rapidly changing
winds, and building most wind plants in the areas with lower risk—
can greatly enhance the probability that offshore wind can help to
meet the United States’ electricity needs.

probabilistic analysis ∣ wind energy ∣ phase-type distribution ∣
tropical cyclone

As a result of state renewable portfolio standards and federal
tax incentives, there is growing interest and investment in

renewable sources of electricity in the United States. Wind is
the renewable resource with the largest installed-capacity growth
in the last 5 y, with U.S. wind power capacity increasing from
8.7 GW in 2005 to 39.1 GW 2010 (1). All of this development has
occurred onshore. U.S. offshore wind resources may also prove
to be a significant contribution to increasing the supply of renew-
able, low-carbon electricity. The National Renewable Energy
Laboratory (NREL) estimates that offshore wind resources can
be as high as four times the U.S. electricity generating capacity in
2010 (2). Although this estimate does not take into account siting,
stakeholder, and regulatory constraints, it indicates that U.S. off-
shore wind resources are significant. Though no offshore wind
projects have been developed in the United States, there are 20
offshore wind projects in the planning process (with an estimated
capacity of 2 GW) (2). The U.S. Department of Energy’s 2008
report, 20% Wind by 2030 (3) envisions 54 GW of shallow off-
shore wind capacity to optimize delivered generation and trans-
mission costs.

U.S. offshore resources are geographically distributed through
the Atlantic, Pacific, and Great Lake coasts. The most accessible
shallow resources are located in the Atlantic and Gulf Coasts.
Resources at depths shallower than 60 m in the Atlantic coast,
fromGeorgia to Maine, are estimated to be 920 GW; the estimate
for these resources in the Gulf coast is 460 GW (2).

Offshore wind turbines in these areas will be at risk from
Atlantic hurricanes. Between 1949 and 2006, 93 hurricanes struck
the U.S. mainland according to the HURDAT (Hurricane Data-
base) database of the National Hurricane Center (4). In this 58-y
period, only 15 y did not incur insured hurricane-related losses
(5). The Texas region was affected by 35 hurricane events, while
the southeast region [including the coasts of Florida, where no
offshore resources have been estimated (2)] had 32 events.

Hurricane risks are quite variable, both geographically and
temporally. Pielke, et al. (6) note pronounced differences in the
total hurricane damages (normalized to 2005) occurring each
decade. Previous research has shown strong associations between
North Atlantic hurricane activity and atmosphere-ocean variabil-
ity on different time scales, including the multidecadal (7, 8).
Atlantic hurricane data show that hurricane seasons with very
high activity levels occur with some regularity; for instance, since
1950, there have been 25 y with three or more intense hurricanes
(Saffir-Simpson Category 3 or higher). There were two 2-y per-
iods with 13 intense hurricanes: 1950–1951 and 2004–2005. 2004
and 2005 hurricanes were particularly damaging to the Florida
and Gulf Coast regions (six hurricanes made landfall in those
areas in 2004 and seven the following year).

These hurricanes resulted in critical damages to energy infra-
structure. Hurricane Katrina (2005), for example, was reported
to have damaged 21 oil and gas producing platforms and comple-
tely destroyed 44 (9). Numerous drilling rigs and hydrocarbon
pipelines were also damaged. Similarly, hurricanes have damaged
powers systems. Liu, et al. (10) reported that in 2003 Dominion
Power had over 58,000 instances of the activation of safety
devices in the electrical system to isolate damages as a result of
Hurricane Isabel. Although no offshore wind turbines have been
built in the United States, there is no reason to believe that this
infrastructure would be exempt from hurricane damages.

In order to successfully develop sustainable offshore resources,
the risk from hurricanes to offshore wind turbines should be
analyzed and understood. Here we present a probabilistic model
to estimate the number of turbines that would be destroyed by
hurricanes in an offshore wind farm. We apply this model to
estimate the risk to offshore wind farms in four representative
locations in the Atlantic and Gulf Coastal waters of the United
States: Galveston County, TX; Dare County, NC; Atlantic County,
NJ; and Dukes County, MA. Leases have been signed for wind
farms off the coasts of Galveston (11) and Dukes County (12); pro-
jects off the coasts of New Jersey and North Carolina have been
proposed (12).

Results
Wind Farm Risk from a Single Hurricane. Wind turbines are vulner-
able to hurricanes because the maximum wind speeds in those
storms can exceed the design limits of wind turbines. Failure
modes can include loss of blades and buckling of the supporting
tower. In 2003, a wind farm of seven turbines in Okinawa, Japan
was destroyed by typhoon Maemi (13) and several turbines in
China were damaged by typhoon Dujuan (14). Here we consider
only tower buckling, because blades are relatively easy to replace
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(although their loss can cause other structural damage). To illus-
trate the risk to a wind farm from hurricane force wind speeds,
we calculate the expected number of turbine towers that buckle in
a 50-turbine wind farm as a function of maximum sustained (10-
min mean) wind speed, assuming that turbines cannot yaw during
the hurricane to track the wind direction (we later consider the
case in which the nacelle can be yawed rapidly enough to track the
wind direction of the hurricane). Fig. 1 plots the median, fifth
percentile, and 95th percentile of the number of turbine towers
that buckle as a function of wind speed. The vertical dotted line
shows the design reference wind speed for wind turbines in IEC
(International Electrotechnical Commission) Class 1 wind re-
gimes, which includes the NREL 5-MW turbine we simulate, and
nearly all offshore wind turbines currently in production. The
IEC 61400-3 design standard for Class 1 wind regimes requires
that a turbine survive a maximum 10-min average wind speed with
a 50-y return period of 50 m∕s (97 knots) at hub height (15); we
scale this wind speed from 90-m height to 10-m height assuming
power-law wind shear with an exponent of 0.077 (16) because
hurricane wind speeds are given for 10-m height.

A Category 2 hurricane (wind speeds of 45 m∕s or higher) will
buckle up to 6% of the turbine towers in a wind farm. Hurricane
Ike in 2008, for example, had a maximum sustained wind speed of
95 knots (49 m∕s) at 10-m height (Category 2) when it passed
over the meteorological tower erected by the developers of the
Galveston Offshore Wind project. If a 50-turbine wind farm
had been located off the coast of Galveston when Hurricane Ike
struck, our model predicts that Hurricane Ike would have had a
50% probability of buckling two or more towers and a 10% prob-
ability of buckling four or more turbine towers.

Higher-category hurricanes will destroy a significant number of
turbines; a Category 3 (wind speeds of 50 m∕s or higher) will
buckle up to 46% of the towers. The damage caused by Category
3, 4, and 5 hurricanes is important for offshore wind development
in the United States because every state on the Gulf of Mexico
coast and 9 of the 14 states on the Atlantic Coast have been struck
by a Category 3 or higher hurricane between 1856 and 2008 (17).

Risk from Multiple Hurricanes. We calculate the cumulative distri-
bution function (CDF) for the number of turbine towers that
buckle in 20 y for wind farms at four different locations, assuming
that buckled towers are not replaced after each storm. The dis-
tributions are modeled by a modified phase-type distribution de-
scribed in Materials and Methods. Fig. 2 shows the CDF for each
location for two cases: turbines that can yaw to track wind direc-

tion (dashed line) and turbines that cannot yaw (solid line). The
nonyawing case is a worst case scenario, but it is realistic for
two reasons. First, wind turbines typically do not have backup
power for yaw motors and hurricanes often cause widespread
power outages. Wind turbine design standards such as the IEC
61400-3 (Design Load Case 6.2) require turbine designers to
assume a yaw misalignment up to �180° if no yaw backup power
is available, though designers can assume the turbine points
directly into the wind if 6 h of backup power is available for the
yaw and control systems (15). Second, wind direction in a hurri-
cane may change faster than a wind turbine can yaw. The NREL
5-MW turbine we model is designed to yaw at 0.3°∕ sec, but
Schroeder, et al. show that the wind direction of Hurricane Bob
in 1991 changed 30° in approximately 60 s (0.5°∕ sec), as mea-
sured 55 km away from the center of the storm (18). The yawing
case in Fig. 2 illustrates how much the risk to a wind farm is
reduced if the turbines can track the wind direction quickly
and reliably as a hurricane passes.

Galveston County is the riskiest location to build a wind farm
of the four locations examined, followed by Dare County, NC. In
contrast, Atlantic County, NJ and Dukes County, MA are signif-
icantly less risky. In Galveston County, there is a 60% probability
that at least one tower will buckle in 20 y and a 30% probability
that more than half will buckle if the turbines cannot yaw; if they
are able to yaw, there is still a 25% probability that at least one
tower will buckle and a 10% probability that more than half will.
In Dare County, NC, there is a 60% probability that at least one
tower will buckle in 20 y and a 9% probability that more than half
will buckle if the turbines cannot yaw; if they are able to yaw,
there is a 15% probability that at least one tower will buckle
and much less than 1% probability that more than half will.

In Atlantic County, NJ there is a 15% probability that at least
one tower will buckle in 20 y and less than 1% probability that
more than half will buckle. In Dukes County, MA, there is a 10%
probability that at least one tower will buckle in 20 y and less than
1% probability that more than half will buckle. If the turbines in
Atlantic and Dukes counties are able to quickly yaw even when
grid power is out, there is approximately a 99% probability that
none will buckle in 20 y.

The results in Fig. 2 assume the TI of hurricanes is lognormally
distributed with a mean of 9% and standard deviation of 1.5%,
where we define the turbulence intensity (TI) as the 10-min stan-
dard deviation of wind speed divided by the 10-min mean wind
speed. The TI distribution is fitted to data from tropical cyclones
over water, as discussed in the SI Text. The probability distribu-
tions in Fig. 2 are sensitive to the chosen value of TI: higher tur-
bulence intensities for a given mean wind speed means higher
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peak wind speeds, which increase the probability of a turbine
tower buckling.

If turbines are replaced after each hurricane, the cumulative
probabilities for fewer than 35 turbine towers buckling in 20 y is
within four percentage points of the distributions without repla-
cement shown in Fig. 2. However, there is a possibility that more
than 50 turbine towers will buckle in 20 y. For example, there is
a 10% probability in Galveston County and 1% probability in
Dare County that more than 50 turbine towers will buckle if
the turbines cannot yaw. The distributions with replacement are
modeled as a compound Poisson distribution; the derivation of
the distribution and a CDF plot of the results are given in SI Text.

Distribution of Damage by Hurricane Intensity. The number of tur-
bine towers that buckle in a wind farm during the farm’s 20-y life
is a function of the frequency of hurricane occurrence and the
intensity of the hurricanes that occur. Higher-intensity storms
buckle more turbine towers, but occur less frequently. To assess
which categories of hurricanes cause the most expected damage,
we use Monte Carlo simulation to calculate the expected value
of the number of turbines that buckle in 20 y and the expected
damage from each category of hurricane. The results are plotted
in Fig. 3. These results reflect damages averaged through 10,000
simulated 20-y periods. The results in any given 20-y period will
be different, typically dominated by one or two hurricanes.

Fig. 3 indicates that Category 3, 4, and 5 hurricanes are pro-
jected to cause most of the expected damage at each location:
98% in Galveston County, 95% in Dare County, 92% in Atlantic
County, and 92% in Dukes County. However, no Category 4 and
5 hurricanes have made landfall in Dare, Atlantic, or Dukes coun-
ties since record keeping began in 1850. Analyses of U.S. hurri-
canes prior to 1850 report four landfalls in North Carolina that
may have been Category 4 (in 1815, 1827, 1842, and 1846) (19,
20) and one in 1821 that was likely either Category 4 or 5 (20).
This historic record indicates that hurricanes of intensity 4 or
higher should be possible in Dare County. Category 4 hurricanes
also appear possible in Atlantic County with sufficiently warm
sea-surface temperatures such as during late August. Hurricane
model projections (19) indicate that the Great Colonial Hurri-
cane of August 1635 most likely retained Category 4 intensity un-
til reaching southern New Jersey. However, storms of Category 4
intensity in coastal Massachusetts may be physically impossible in
present climate conditions. Generalized Extreme Value distribu-
tions (GEV) fit to the maximum sustained wind speeds of hurri-
canes in the regions around Dare, Atlantic, and Dukes counties
predict probabilities of 4%, 2%, and 2%, respectively, that a hur-
ricane making landfall in those counties will be Category 4 or 5.

We test the sensitivity of our results in Fig. 2 and Fig. 3 to the
occurrence of Category 4 and 5 hurricanes by repeating the
Monte Carlo simulation of 10,000 20-y periods but excluding
periods that contain a Category 4 or 5 hurricane. This analysis
excludes 16% of total simulations for Dare County, 2% for Atlan-
tic County, and 2% for Dukes County. The results for Dare
County are the most sensitive to the occurrence of high-category
hurricanes: the expected number of turbine towers that buckle
in 20 y decreases from 8.3 to 3.2, the probability of no turbine
towers buckling increases from 33% to 39%, and the probability
that less than half the turbine towers buckle increases from 89%
to more than 99% when Category 4 and 5 hurricanes are ex-
cluded. The results for Atlantic and Dukes counties show a simi-
lar trend: the expected number of turbine towers that buckle
falls from 1.3 to 0.6 in Atlantic County and from 1.2 to 0.5 in
Dukes County. In both Atlantic and Dukes counties, the prob-
abilities of none of the turbine towers and less than half the
turbine towers buckling increase approximately two percentage
points. Plots of the CDF of number of turbine towers bucked with
higher-category hurricanes excluded are given in SI Text.

Discussion
The 2008 DOE (Department of Energy) report (3) estimates that
54 GWof shallow offshore wind capacity will be required to bring
the United States to 20% wind, and locates most of that capacity
off the Gulf and East coasts. We find that hurricanes pose a sig-
nificant risk to wind turbines off the U.S. Gulf and East coasts,
even if they are designed to the most stringent current standard
(IEC Class 1 winds). Now is an appropriate moment to consider
mitigation strategies that can be incorporated to reduce risk to
the grid and to operators, before large-scale offshore wind devel-
opment is undertaken in the United States.

Engineered solutions can mitigate the risk of wind turbine
damage as a result of hurricanes in the eastern United States.
Typically, wind turbines are designed based on engineering design
codes for northern Europe and the North Sea, where nearly all
the offshore and coastal wind turbines have been built. These
codes specify maximum sustained wind speeds with a 50-y return
period of 42.5–51.4 m∕s (83–100 knots), lower than high inten-
sity hurricanes (21). Several authors have studied extreme winds
in areas prone to tropical cyclones. Garciano, et al. (22), propose
increasing the 50-y design reference wind speed for the Philip-
pines from 50 m∕s to 58 m∕s at hub height, Clausen, et al. (23),
propose 55–75 m∕s (at 10-m height) for parts of the Philippines
and southern Japan, and Ott proposes a model of extreme wind
speeds in the western Pacific (24). Some authors analyze the de-
sign codes in the context of tropical cyclones. A study by Jha, et
al., sponsored by a Joint Industry Project that included two wind
turbine manufacturers (GE Energy and Clipper Wind), compares
the reliability levels of an offshore wind turbine designed to IEC
61400-3 and API RP-2A standards operating in several hurricane
prone U.S. locations (15, 25, 26). Clausen, et al. (14), recommend
increasing the design load safety factor, currently 1.35, to 1.7 in
order to maintain the same level of reliability in tropical cyclone
areas. Clausen, et al. estimate increasing the safety factor will in-
crease the cost of an onshore turbine 20–30%. The percentage
cost increase to strengthen an offshore turbine, like the one we
model in this paper, for tropical cyclones is likely to be smaller
because a significant portion of the cost of offshore turbines is in
the logistics of transporting, installing, and maintaining them.

We have also demonstrated that wind turbines that have exter-
nal power available to yaw can have a substantially reduced risk
of being destroyed. Installing lead-acid batteries to allow a tur-
bine to yaw without external power would add $30,000–$40,000
(2010 prices) to the price of a turbine and 1,400–2,400 kg to its
weight, assuming 6 h of backup power for yaw motors that draw
12 kW of power (27). The yaw rate of the turbine we model is
0.3 ° per second. Further work is needed to determine the yaw
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rate that is appropriate for hurricanes. Backup power, robust
wind direction indicators, and active controls may be a low cost
way to reduce risk to the turbine.

A main concern with losing wind turbines during hurricanes
is the implication this will have for grid reliability, and more work
is needed on this issue. We hypothesize, however, that there is
ample warning of hurricanes, and supplemental generation re-
serves can be brought on line to cover for the wind plants that will
be shut down for the months to years that it may take to rebuild
buckled towers. However, system operators must make it econom-
ical for the owners of such spare generation to stay in business even
in years with no hurricane damage, and suitable capacity payment
mechanisms will be required.

The probability of hurricane landfalls is not geographically
uniform. Fig. 4 plots the offshore wind resources within water
shallower than 60 m (2) and the annual rate of hurricane landfalls
for states in the eastern United States since 1900 (28). Information
for Florida, Alabama, and Mississippi is not included in Fig. 4.
Though these states have moderate to high hurricane occurrence
rates (0.44, 0.14, and 0.10 y−1 respectively), there are no offshore
wind resource estimates available for them. The specific results
shown in this paper are thus not representative of all the risk of
hurricanes to all possible offshore wind farm locations. It is clear,
however, that analysis of the type presented here should be per-
formed as part of the wind farm siting analysis.

Our analysis also assumed that historic wind speeds and his-
toric rates of hurricane occurrence are representative of future
conditions. Historic conditions may be poor predictors if climate
change were to affect hurricane intensity or frequency. Detection
of climate change effects on hurricanes is complicated by the very
high sensitivity of hurricanes to variations in atmosphere-ocean
conditions on multiple time scales, including the multidecadal
(29), and by the short period over which hurricane observations
are considered reliable (29, 30). Current high-resolution model-
ing studies project a relatively small increase in Atlantic hurricane
intensity with increased global temperatures due to an increase in
available thermal energy. Some of these models also identify a
possible decrease in Atlantic hurricane frequency, which may be
attributable to the stabilization of the upper atmosphere (31).
According to these projections, an increase in intensity due to
climate change may not be noticeable for the next few decades
(30–33). In line with this, Pielke, et al. (6) report that no trends
in normalized damages can be detected. On the other hand, a
recent observational study (34) finds that there has been an in-
crease in the intensity of the most intense hurricanes. Wind farm
developers will invest and operate under the current uncertainties
on the future development of Atlantic hurricane activity. The
method developed here will support the decision process of wind
turbine investors in hurricane-prone areas. Sensitivity analysis on
models like the one presented here can allow investors and reg-
ulators to see how distribution parameters affect the risk.

There is a very substantial risk that Category 3 and higher
hurricanes can destroy half or more of the turbines at some
locations. By knowing the risks before building multiple GW of
offshore wind plants, we can avoid precipitous policy decisions
after the first big storm buckles a few turbine towers. Reasonable
mitigation measures—increasing the design reference wind load,
ensuring that the nacelle can be turned into the wind, and build-
ing most wind plants in the areas with lower risk—can greatly
enhance the probability that offshore wind can help to meet the
United States’ electricity needs.

Materials and Methods
We model the distribution of the number of wind turbine towers buckled by
hurricanes for two cases: (i) turbines are not replaced for the life of the wind
farm, and (ii) turbines are replaced after each hurricane. For each case, we
calculate the distributions using two methods: an analytical probability dis-
tribution presented here and a Monte Carlo simulation discussed in SI Text.
All the analyses presented here model a wind farm of 50 NREL 5-MW wind
turbines (35) for 20 y. The turbines are shut down with their blades feathered
to 90° because hurricane wind speeds are much higher than the maximum
operating limit of wind turbines. We believe our results underestimate the
probability of loss because we model only buckling of the tower base but
ignore damage to other components. Our results may also underestimate
the probability of tower buckling because we analyze the onshore version of
the NREL 5-MW turbine, which has a rigid foundation structure and is not
subjected to wave loads; Jha, et al. (25) develop a more detailed model the
NREL 5-MW turbine that includes foundation compliance and wave loads.

Analytical Distribution: Turbine Towers Buckled without Replacement.Wemod-
el Yno rep, the number of turbine towers that buckle in T -years without re-
placement as a modified phase-type distribution with six parameters:
Yno rep ∼ PH(λ, μ, σ, ξ, α, β), where λ is the hurricane occurrence rate; μ, σ,
and ξ are the three parameters of the GEV distribution for event maximum
wind speed; and α and β are the two parameters of the log-logistic wind
speed-turbine buckling probability relationship. We use a phase-type distri-
bution because it models a series of events (storms) that occur randomly with
a certain rate, and each buckles an integer number of turbine towers; it gives
the distribution for the distribution of time until all towers have been
buckled. Fig. 2 plots the results calculated with this method.

Hurricane occurrence is modeled as a Poisson process with rate parameter
λ fitted to historical hurricane data. The probability that H, the number of
hurricanes that occur in T -years, equals a particular value h is:

PrðH ¼ hÞ ¼ ðλTÞh
h!

e−λT: [1]

The maximum 10-min sustained wind speed of each hurricane at 10-m
height is modeled as a GEV distribution with a location parameter μ, a scale
parameter σ, and a shape parameter ξ fitted to historical hurricane data.
The probability density function for W, the maximum sustained wind speed,
evaluated at particular value w is:

fW ðwÞ ¼ 1

σ
exp
�
−
�
1þ ξ

w − u
σ

�
−1
ξ

��
1þ ξ

w − u
σ

�
−1−1

ξ

: [2]

The probability that a single wind turbine tower is buckled by a 10-min
sustained hub-height wind speed u is modeled using a log-logistic function
with a scale parameter α and a shape parameter β. The parameters for tur-
bines that can and cannot yaw to track wind direction are given in Table 1.
These parameters are fit to probabilities of turbine tower buckling calculated
by comparing the results of simulations of the 5-MW offshore wind turbine

Fig. 4. Resource vs. Hurricane Occurrence Rate λ [year−1].

Table 1. Parameters of log-logistic Functions for Probability of
Tower Buckling

Turbine pointed
into wind

(Active Yawing)

Turbine pointed
perpendicular to

wind (Not Yawing)

Damage function
parameters (log-logistic
function)

α ¼ 174, β ¼ 19.3 α ¼ 140, β ¼ 18.6
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designed by the NREL (35) to the stochastic resistance to buckling proposed
by Sørensen, et al. (36). More extensive details are given in SI Text.

The function is fitted to the results of simulations of stresses on a parti-
cular turbine design given a yaw direction relative to the wind, a wind TI,
and a sustained wind speed u, described in further detail in SI Text. The
log-logistic function is given by:

DðuÞ ¼ ðu∕αÞβ
1þ ðu∕αÞβ : [3]

The number of turbine towers buckled by a single hurricane in a wind
farm of n turbines is modeled as a beta-binomial distribution with para-
meters αB and βB. We derive the beta-binomial distribution by fitting a beta
distribution with parameters αB and βB to the probability of buckling as a
function of wind speed weighted by the probability of occurrence of each
wind speed (a convolution of D and W ) with a nonlinear least-squares fit.
The wind speedsW are scaled to turbine hub height using the table of scaling
values for hurricanes given by Franklin, et al. (16). Fitting the distribution sim-
plifies the model by replacing the convolution of D and W , which together
have five parameters, with a beta distribution that has only two parameters.
The beta distribution gives the distribution of buckling probabilities for a sin-
gle turbine tower given a hurricane with random GEV maximumwind speed.
The corresponding beta-binomial distribution with the same parameter
values αB and βB gives the probability that X, the number of turbine towers
that buckle out of n total, equals a particular value x:

PrðX ¼ xÞ ¼ n
x

� �
Bðxþ αB;n − xþ βBÞ

BðαB;βBÞ
; [4]

where BðÞ is the beta function.
The cumulative distribution of the number of turbine towers buckled in T

or fewer years without replacement, Yno rep, is modeled as a modified phase-
type distribution:

PrðY no rep ≤ yjτ ≤ TÞ ¼ π expðTTðy;nÞÞe; [5]

where π is a row vector of initial state probabilities, T is a matrix of jump
intensities for the transitions between states, and e is a column vector of
ones. A phase-type distribution gives the distribution of times τ to reach
the absorbing state of a Markov jump process (37, 38). In this application,
each jump (state transition) represents a hurricane occurrence, each state re-
presents a unique number or turbines buckled, and the absorbing state is
when all n turbine towers in the wind farm have buckled. We modify the
phase-type distribution to calculate the distribution of the number of turbine
towers buckled Yno rep in a fixed time T by iteratively redefining the absorb-
ing state to include cases where less than n turbine towers are bucked, as
shown in Fig. 5.

This redefinition of the absorbing state makes the sizes of the vectors π
and e a function of y and makes both the size and values of the matrix T a
function of y. To calculate the probability that y or fewer turbine towers
buckle, we define the absorbing state to include an integer number of tur-
bine towers buckled from y þ 1 to n. There are y þ 1 total states; the y þ 1st

state is the absorbing state. The term π in [5] is a y þ 1 element row vector of
initial state probabilities; in this application π ¼ ½1 0…0� because the distribu-
tion begins in state 1 (no turbine towers buckled). The term e is a column
vector of ones: ½1 1…1�T . The term T is a ðy þ 1Þ × ðy þ 1Þ matrix of jump
intensities, where the jump intensity Tijðy;nÞ from the i th state to the j th
state is the product of λ, the rate of hurricane occurrence, and pij , the prob-
ability a hurricane causing a transition from state i to state j by buckling tur-
bine towers. The off-diagonal elements of Tðy;nÞ in the i th row and j th are
calculated by:

Tijðy;nÞ ¼ λ beta-binomialðn − iþ 1;n − jþ 1; αB;βBÞ j ≥ i

[6]

and the diagonal elements are calculated by:

Tiiðy;nÞ ¼ −
�
tiðy;nÞ þ∑

j>i

Tijðy;nÞ
�
; [7]

where t is the jump intensity for a hurricane that jumps directly to the ab-
sorbing state (i.e., destroys all remaining turbines):

tiðy;nÞ ¼ λ ∑
n−y−1

m¼0

beta-binomialðn;n −m; αB;βBÞ: [8]

The off-diagonal elements of T do not sum to 1 along a row because some
hurricanes do not cause a state transition (i.e., some hurricanes do not buckle
any turbine towers).

Analytical Distribution: Turbine Towers Buckled with Replacement. We model
Y rep, the number of turbine towers that buckle in T -years with replace-
ment as a compound Poisson distribution with six parameters: Y rep∼
Compound Possion (λ, μ, σ, ξ, α, β). We use a compound Poisson distribution
because it models the distribution of the sum of independent identically dis-
tributed events (hurricanes buckling wind turbines, in this case) that occur as a
Poisson process. The compound Poisson distribution is a convolution of the
Poisson distribution given in [1] for the number of hurricanes that occur in
T -years and the beta-binomial distribution given in [4] for number of turbine
towers buckled by each hurricane. No analytical expression exists for the PDF
(probability density function) or CDF (cumulative distribution function) of a
compound Poisson distribution that contains a beta-binomial distribution.
We use Panjer’s recursion (39, 40), an iterative method, to approximate the
PDF. The details are given in SI Text.

y+1

n n+1y+1 ...1 2 3

Turbines
Destroyed (Y ): 0 1 2 Y ≥ y+1

...p1,2 p2,3

p1,n+1+ p1,n
+ ...

+p1,y+
1

p1,3
p2,n+1+ p2,n+ ... +p2,y+1

p3,n+1+ p3,n+ ... +p3,y+1

Fig. 5. TheMarkov Chain used to calculate the probability that the number of turbine towers buckled is less than or equal to y. We define the absorbing state
as all the states where Yno rep ≥ y þ 1.

Table 2. Distribution Parameters for Poisson and GEV Distributions

Rate of hurricane occurrence
[events/year]

Max. sustained hurricane wind
speed: GEV distribution [knots]

Geographic range of hurricanes
modeled (lat/long)

Galveston County, TX λ ¼ 0.19 μ ¼ 78.7, σ ¼ 12.1, ξ ¼ 0.251 25.5°N–30°N 92°W–99°W
Dare County, NC λ ¼ 0.21 μ ¼ 77.6, σ ¼ 11.9, ξ ¼ −0.0366 32°–36.5°N 71°–81°W
Atlantic County, NJ λ ¼ 0.047 μ ¼ 77.2, σ ¼ 10.6, ξ ¼ −0.0544 36°–41°N 71°–77.5°W
Dukes County, MA λ ¼ 0.075 μ ¼ 73.2, σ ¼ 6.99, ξ ¼ −0.139 40.3°–42°N 66°–74.5°W
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Application to Specific Locations. The rate of hurricane occurrence parameter
λ for the Poisson distribution given in [1] is calculated as the number of hur-
ricanes to make landfall (direct and indirect strikes) in each county between
1900 and 2007 (17), divided by the length of the time period. The calculated
values for the locations we investigate are given in Table 2. The parameters
for the GEV distribution given in [2] are fit to historical data for the maximum
10-min sustained wind speed at 10-m height for all hurricanes to pass
through the geographic ranges of interest (described in the fourth column
of Table 2) between 1851 and 2008.

ACKNOWLEDGMENTS. This workwas supported in part by the CarnegieMellon
Electricity Industry Center, the U.S. Environmental Protection Agency (EPA)
STAR (Science to Achieve Results) fellowship program, the Doris Duke
Charitable Foundation, the Richard King Mellon Foundation, the Heinz
Endowments, the Department of Energy National Energy Technology
Laboratory, and the Electric Power Research Institute through the RenewElec
project at Carnegie Mellon University. Support was also received from the
Center for Climate and Energy Decision Making created through a coopera-
tive agreement between the National Science Foundation (SES-0949710) and
Carnegie Mellon University.

1. DOE (2010) Electric Power Annual (Energy Information Administration, Washington
DC), Department of Energy.

2. Shwartz M, Heimiller D, Haymes S, Musial W (2010) Assessment of Offshore Wind
Energy Resources for the United States. (National Renewable Energy Laboratory, Gold-
en, CO).

3. Lindenberg S, Smith B, O’Dell K, DeMeo E, Ram B (2008) 20% Wind Energy by 2020:
Increasing Wind Energy’s Contribution to US. Electricity Supply (National Renewable
Energy Laboratory, Golden, CO).

4. Blake E, Rappaport E, Landsea CW (2007) The Deadliest, Costliest, and Most Intense
United States Tropical Cyclones from 1851 to 2006; NOAA Technical Memorandum
NWS TPC-5. (National Hurricane Center, FL).

5. Changon S (2009) Characteristics of severe Atlantic hurricanes in the United States
1949-2006. Natural Hazards 48:329–337.

6. Pielke R, et al. (2008) Normalized hurricane damage in the United States. Natural Ha-
zards Reviews 2008:29–42.

7. Landsea CW, Pielke RA, Mestas-Nuñez AM, Knaff JA (1999) Atlantic Basin hurricanes:
indices of climate change. Climatic Change 42:89–129.

8. Goldenberg SB, Landsea CW, Mestas-Nunez AM, Gray WM (2001) The recent increase
in Atlantic hurricane activity: causes and implications. Science 293:474–479.

9. Cruz A, Krausmann E (2008) Damage to offshore oil and gas facilities following
hurricanes Katrina and Rita: an overview. J Loss Prevent Proc 21(6):620–626.

10. Liu H, Davidson R (2007) Statistical forecasting of electric power restoration times in
hurricanes and ice storms. Power Syst 22:2270–2279.

11. DOE (2005) Company Plans Large Wind Plant Offshore of Galveston (Energy Efficinecy
& Renewable Energy Network News, Washington, DC).

12. DOE (2010) Interior Department Signs First U.S. Offshore Wind Energy Lease (Energy
Efficinecy & Renewable Energy Network News, Washington, DC).

13. Takahara K, et al. (2004) Damages of wind turbine on Miyakojima Island by Typhoon
Maemi in 2003.

14. Clausen N, et al. (2007) Wind farms in regions exposed to tropical cyclones. (Germa-
nischer Lloyd WindEnergie GmbH, Hamburg) European Wind Energy Conference and
Exhibition.

15. IEC IEC, Wind Turbines- Part 3: Design requirements for offshore wind turbines (Gen-
eva) IEC 61400-3..

16. Franklin J, Black M, Valde K (2003) GPS dropwindsondewind profiles in hurricanes and
their operational implications. Weather and Forecasting 18:32–44.

17. National-Hurricane-Center (2010) County by county hurricane strikes 1900–2009. (Na-
tional Hurricane Center, Coral Gables, FL), p 154 Updated from Jarrell JD, Hebert PJ,
Mayfield M 1992: "Hurricane Experience Levels of Coastal County Populations from
Texas to Maine" NOAA Technical Memorandum NWS NHC-46 .

18. Schroeder J, Smith D, Peterson R (1998) Variation of turbulence intensities and integral
scales during the passage of a hurricane. J Wind Eng Ind Aerod 77:65–72.

19. Jarvinen BR (2006) Storm tides in twelve tropical cyclones (including four intense New
England hurricanes). (National Hurricane Center, FL) p 99.

20. Bossak BH (2003) Early 19th Century U S. Hurricanes: A GIS Tool and Climate Analysis.
(Florida State University, Tallahassee, FL), PhD dissertation.

21. Argyriadis K (2003) Recommendations for Design of OffshoreWind Turbines (RECOFF),
Section 2.1: External Conditions.

22. Garciano L, Koike T (2010) New reference wind speed for wind turbines in typhoon-
prone areas in the Philippines. J Struct Eng 136:463–467.

23. Clausen N-E, Ott S, Tarp-Johansen N-J, Nørgård P, Larsén XG (2006) Design of wind
turbines in an area with tropical cyclones. (European Wind Energy Conference and
Exhibition, Athens), pp 1–10.

24. Ott S (2006) Extreme winds in the western North Pacific. pp 1–39 Riso-R-1544(EN) Riso
National Laboratory, Roskilde, Denmark.

25. Jha A, Dolar D, Musial W, Smith C (May 2010) On hurricane risk to offshore wind
turbines in US waters. Presented at the Offshore Technology Conference (2010 Off-
shore Technology Conference, Houston, TX), pp 3–6.

26. API (2000) Recommended Practice for Planning, Designing, and Constructing Fixed
Offshore Platforms—Working Stress Design. 1st Ed (American Petroleum Institute,
Washington, DC).

27. Aabakken J (2006) Power Technologies Energy Data Book (National Renewable Energy
Laboratory, Golden, CO), 4th Ed.

28. Jarvinen BR, Neumann CJ, Davis MAS (1988) A Tropical Cyclone Data Tape for the
North Atlantic Basin, 1886-1983: Contents, Limitations, and Uses. NOAA Tech. Memo
NWS NHC 22 (National Hurricane Center, FL), 1984, updated 1988.

29. Grossmann I, Morgan MG (2011) Tropical cyclones, climate change, and scientific
uncertainty: What do we know, what does it mean, what should be done? Climatic
Change 110:543–579.

30. Landsea CW, Harper BA, Hoarau K, Knaff JA (2006) Can we detect trends in extreme
tropical cyclones? Science 313:452–454.

31. Knutson TR, et al. (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163.
32. Bengtsson L, et al. (2007) How may tropical cyclones change in a warmer climate?

Tellus A 59:539–561.
33. Bender MA, et al. (2010) Modeled impact of anthropogenic warming of the frequency

of intense Atlantic hurricanes. Science 327:454–458.
34. Elsner JB, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest tropical

cyclones. Nature 444:92–95.
35. Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW Reference

Wind Turbine for Off-shore SystemDevelopment (National Renewable Energy Labora-
tory, CO).

36. Sørensen J, Tarp-Johansen N (2005) Reliability-based optimization and optimal relia-
bility level of offshore wind turbines. Int J Offshore Polar 15:141–146.

37. Neuts MF (1995)Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Ap-
proach (Johns Hopkins University Press, MD).

38. Bladt M (2005) A review on phase-type distributions and their use in risk theory. ASTIN
Bull 35:145–161.

39. Panjer H (1981) Recursive evaluation of a family of compound distributions.ASTIN Bull
12:22–26.

40. Dickson D (1995) A review of Panjer’s Recursion formula and its applications. British
Actuarial Journal 1:107–124.

3252 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1111769109 Rose et al.



Supporting Information
Rose et al. 10.1073/pnas.1211977109

Supporting Information corrected July 19, 2012
SI Text
Risk from Multiple Hurricanes with Replacement. In the main text,
Fig. 2 present cumulative distribution function (CDF) plots for
the number of turbines destroyed in 20 y if buckled turbine towers
are not replaced. Here we present similar results for the case in
which buckled towers are replaced after each storm. Fig. S1 plots
the CDF for each location for two cases: turbines that can yaw to
track wind direction (dashed lines) and turbines that cannot yaw
(solid lines).

In this scenario, buckled towers are replaced after each storm
so there is no limit to the maximum number of towers that buckle.
There is a 10% probability that more than 50 turbine towers will
buckle in Galveston County and a 1% probability that more than
50 will buckle in Dare County.

Risk from Multiple Hurricanes, Category 4 and 5 Hurricanes Excluded.
To illustrate the effect of excluding Category 4 and 5 hurricanes
for Dare, Atlantic, and Dukes counties, we plot the CDF of the
number of turbines damaged with and without those higher-
category hurricanes. The results for the case that turbines cannot
yaw to track the wind direction are shown in Fig. S2, where solid
lines plot the results for all hurricanes and dotted lines plot the
results excluding Category 4 and 5 hurricanes. Similarly, the
results for the case that turbines can actively yaw are shown in
Fig. S3, where solid lines plot the results for all hurricanes
and dotted lines plot the results excluding Category 4 and
5 hurricanes.

Analytical Distribution: Turbine Towers Buckled with Replacement.As
described in the main text, we use a compound Poisson distribu-
tion to model Y rep, the total number of turbine towers buckled in
T-years in a wind farm of n turbines if towers are immediately
replaced after they are buckled by a hurricane. The compound
Poisson distribution is a function of six parameters: λT, μ, σ,
ξ, α, and β.

Y rep ∼ compound PoissonðλT; μ; σ; ξ; α; βÞ: [S1]

No analytical expression exists for the PDF (probability density
function) or CDF of a compound Poisson distribution that
contains a beta-binomial distribution. We use Panjer’s recursion
(1, 2), an iterative method, to compute the exact pdf:

PrðY rep ¼ yÞ ¼ gy ¼ ∑
y

j¼1

�
aþ bj

y

�
f igy−j; [S2]

where

f j ¼
�
PrðXi ¼ jÞ j ≤ n
0 j > n

: [S3]

The value of f j is zero for j > n in Eq. S2 because the beta-
binomial distribution for the number of turbine towers buckled
in the i th hurricane Xi is not defined for x > n; i.e, the number
of towers buckled in one hurricane cannot be larger than the
number of turbines in the wind farm.

Panjer defines a and b for a Poisson distribution (1):

a ¼ 0

b ¼ λT:

The initial value of f is:

f 0 ¼ PrðXi ¼ 0Þ ¼
n

0

 !
Bð0þ αB; n − 0þ βBÞ

BðαB; βBÞ
¼ BðαB; nþ βBÞ

BðαB; βBÞ
[S4]

and the initial value g0, from (3), gives the probability that no
turbine towers are buckled by hurricanes in T-years as the prob-
ability that no hurricanes occur (H ¼ 0) plus the probability that
a positive number of hurricanes occur but cause no damage:

g0 ¼ PrðH ¼ 0Þ þ PrðY ¼ 0jH > 0Þ

¼ ðλTÞ0
0!

e−λT þ∑
∞

i¼1

PrðX ¼ 0ÞPrðH ¼ iÞ

¼ e−λT þ∑
∞

i¼1

� n

0

 !
Bð0þ αB; n − 0þ βBÞ

BðαB; βBÞ
�

i ðλTÞ i
i!

e−λT

¼ e−λT þ∑
∞

i¼1

�
BðαB; nþ βBÞ
BðαB; βBÞ

�
i ðλTÞ i

i!
e−λT; [S5]

where Bðα; βÞ is the beta function:

BðαB; βBÞ ¼
ΓðαBÞΓðβBÞ
ΓðαB þ βBÞ

¼ ðαB − 1Þ!ðβB − 1Þ!
ðαB þ βB − 1Þ! [S6]

and ΓðÞ is the Gamma function.

Monte Carlo Distribution: Turbine Towers Buckled with Replacement.
To check the compound Poisson distribution described above,
we use Monte Carlo simulations to calculate Y rep, the distribu-
tion of the total number of turbine towers buckled in T-years
in a wind farm of n turbines if towers are replaced after each hur-
ricane. We simulate 10,000 20-y periods using the same distribu-
tions used in the compound Poisson distribution: H for the fre-
quency of hurricane occurrence, W for the maximum sustained
wind speed, andD for the probability of buckling as a function of
wind speed.

For each simulated 20-y period in a given location, we calculate
the total number of towers that buckle according to the following
procedure:

1. Draw number of hurricanes from Poisson distribution H
described in Hurricane Frequency.

2. Draw maximum sustained wind speed for each hurricane from
Generalized Extreme Value (GEV) distribution W described
in Hurricane Intensity (W ).

3. Scale maximum sustained wind speed to hub height (4) and
calculate probability of a single turbine tower buckling at that
wind speed using the log-logistic damage function described in
Wind Turbine Damage Function (D).

4. Calculate the number of towers buckled in each hurricane
using a Binomial distribution with the probability of buckling
calculated in step 3 and n turbines.
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A comparison of the distributions calculated with the com-
pound Poisson distribution and the Monte Carlo simulation is
shown in Fig. S4.

Monte Carlo Distribution: Turbine Towers Buckled without Replace-
ment. To check the phase-type distribution described in the main
text, we use Monte Carlo simulations to calculate Y no rep, the dis-
tribution of the total number of turbine towers buckled inT-years
in a wind farm of n turbines if turbines are not replaced after they
are destroyed. We simulate 10,000 20-y periods using the same
distributions used in the phase-type distribution: H for the fre-
quency of hurricane occurrence, W for the maximum sustained
wind speed, andD for the probability of buckling as a function of
wind speed.

For each simulated 20-y period in a given location, we calculate
the total number of turbine towers buckled according to the
following procedure:

1. Draw number of hurricanes from Poisson distribution H
described in Hurricane Frequency.

2. Draw maximum sustained wind speed for each hurricane from
GEV distribution W described in Hurricane Intensity (W ).

3. Scale maximum sustained wind speed to hub height (4) and
calculate probability of a single turbine tower buckling at that
wind speed using the log-logistic damage function described in
Wind Turbine Damage Function (D).

4. Calculate the number of remaining turbines buckled in each
hurricane using a Binomial distribution with the probability
of buckling calculated in step 3 and the number of turbines
remaining after all the previous hurricanes.

A comparison of the distributions calculated with the phase-
type distribution given in the main text and the Monte Carlo
simulation described above is shown in Fig. S5.

Hurricane Frequency (H).We fit a Poisson distribution to the rate of
hurricane occurrence in a particular county by dividing the num-
ber of hurricanes to make landfall in that county from 1900 to
2006 by the number of years (5). Table 2 in the main text lists the
resulting rate of hurricane occurrence values λ for the four coun-
ties we examine. This method of calculating the rate of hurricane
occurrence assumes that the rate is constant and equal to the
average rate. However, previous research has shown strong
associations between North Atlantic hurricane activity and
atmosphere-ocean variability on different time scales, including
the multidecadal (6, 7).

Hurricane Intensity (W).We fit a GEV distribution to the maximum
10-min sustained wind speed at 10-m height of hurricanes that
pass through a region around the counties we examine. Table 2
in the main text gives the parameters of the fitted GEV distribu-
tions for each location and the latitude and longitude limits of
the regions around those locations. Fig. 6 compares the empirical
and fitted CDFs for the maximum sustained wind speed at each
location.

Wind Turbine Damage Function (D).We fit a log-logistic distribution
to the probability of a wind turbine tower buckling as a function of
10-min sustained wind speed at hub height. The probability of
the turbine tower buckling at a given wind speed is calculated
by simulating tower bending moments of a 5-MW National
Renewable Energy Laboratory (NREL) turbine and comparing
them to the stochastic resistance to buckling of the turbine tower.
In our analysis, we model the 5-MW wind turbine design created
by the NREL for two load cases (active yawing and not yawing).

We calculate separate damage functions for the “active-
yawing” and “not-yawing” load cases because those are the best
and worst case wind load conditions for an idling wind turbine.
The active-yawing case assumes the grid power is available to the

turbine or the turbine has a backup power source for the yaw
motors and control system; the not-yawing case assumes the tur-
bine does not have a backup power source and grid power has
been lost, a typical occurrence in hurricanes (8). The current
design standards for wind turbines given by the IEC (9) and
Germanischer-Lloyd (10) require that an idling wind turbine
be able to survive 10-min sustained wind with 50-y recurrence
period (load case 6.2). If backup power is not available for the
yaw and control systems, the IEC standard requires the turbine
must be able to survive a yaw misalignment of �180° and the
Germanischer-Lloyd standard specifies �30°. The active-yawing
case we simulate assumes backup power for the yaw system, and
the not-yawing case assumes a yaw misalignment of 90°. The
probability of buckling as a function of wind speed for the ac-
tive-yawing and not-yawing cases are plotted in Fig. S7.

Bending Moment Simulation. We calculate a range of maximum
tower bending moments by simulating the mechanical loads on an
NREL 5-MW turbine (11) for mean wind speeds from 40 to
110 m∕s (78–214 knots) at hub height. We simulate 30 10-min
periods for each mean wind speed, with the turbulence intensity
(TI) of each period drawn from a lognormal distribution with a
mean of 9% and standard deviation of 1.5%. The turbine is shut
down with blades feathered because the wind speed is higher than
the operating limit.

The NREL 5-MW turbine we simulate is designed for offshore
installation in an IEC Class 1B wind regime (12). We simulate
the configuration referred to by NREL as “onshore,”which is
identical to the “offshore” except that the onshore configuration
assumes a rigid foundation and no ocean wave loads. The rigid
foundation we use in our simulations is likely to give lower esti-
mates of the maximum tower bending moment than a compliant
offshore foundation design, according to simulations conducted
by Bush, et al. (13). Neglecting wave loads is also likely to give
lower estimates of the maximum tower bending moment because
wave loads contribute significantly to the tower bending moment,
as shown by simulations conducted by Jha, et al. (14). These two
simplifications of the turbine model embodied in the onshore
configuration likely underestimate tower bending moments
and therefore underestimate the probabilities of tower buckling.

We use the TurbSim software, version 1.50 (15), to simulate
a turbulent 3D wind field. We generate 30 10-min wind speed
time series for each mean wind speeds from 40–110 m∕s
(78–214 knots) in 2 m∕s increments. The turbulence around each
mean wind speed is generated from the Normal Turbulence Mod-
el given in the IEC 61400-3 design standard (9). For each simula-
tion, we randomly draw a 10-min TI value from a lognormal
distribution with a mean of 9% and a standard deviation of
1.5%. TI is calculated as the quotient of the 10-min mean
wind speed u and the 10-min standard deviation σ : TI ¼
u10min∕σ10min. The lognormal distribution is fitted to TI values
measured in hurricanes and tropical cyclones over water. The di-
rectly measured TI values are given in Table S1 and TI values
calculated from directly measured gust factors (GF) are given
in Table S2. TI values are calculated from measured GF values
according to the relationship TI ¼ ðGF − 1Þ∕α, where α ¼ 2.44 is
averaged from several values given by Yu, et al. (16). GF values
given by Vickery, et al. use a 60-min averaging period; Vickery, et
al. recommend dividing the GF by 1.055 to calculate the 10-min
value (17). We scale the TI values to hub height h ¼ 90 meters
using the following relationship derived from equation 2.3.2-3 in
the API RP-2A design standard:

TIðhÞ ¼ TIðhrefÞ
�

h
href

�
−0.22

: [S7]

Fig. S8 plots the TI values directly measured and derived from
GF measurements in tropical cyclones, other TI values measured
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over water in extratropical storms, the tropical-cyclone TI values
scaled to hub height, and the power-law from Eq. S7 used to scale
them to hub height.

The bending moment on base of the turbine tower is domi-
nated by three forces: aerodynamic force on the turbine blades,
aerodynamic force on the nacelle, and aerodynamic force on the
tower. We calculate the horizontal components (x and y) of the
moments caused by those three forces for each 0.0125-s time step
in a 10-min simulation. We select the maximum vector sum of the
moments after excluding the first 60-s of the simulation to remove
transient oscillations caused by initial conditions of the simula-
tion. The process is repeated for 30 simulations at each value
of mean wind speed. Fig. S9 plots the magnitude of the average
of maximum tower bending moments as a function of mean wind
speed, with the contributions of wind loads on the blades, nacelle,
and tower separated. Fig. S9A plots the moments for the “Active-
Yawing” load case, where the wind strikes the turbine head-on,
and Fig. S9B plots the moments for the “Not-Yawing” load case,
where the wind strikes the turbine from the side.

We simulate the moment caused by the aerodynamic force on
the feathered blades using the NREL FAST software, version
7.00.01a-bjj (18). The output signals for the x- and y-components
of the bending moment at the tower base are labeled “TwrBsMxt”
and “TwrBsMyt.” The maximum moments in some simulations
are anomalous, especially for the Not-Yawing load case where the
wind strikes the turbine from the side. We believe these outliers
are the result of numerical convergence problems in the FAST
software. We exclude the outliers by fitting a robust quadratic
least-squares line with bisquare weights to the maximum mo-
ments as a function of mean wind speed and excluding maximum
moments outside the �50% range around the quadratic regres-
sion line, as shown in Fig. S10.

FAST does not simulate wind loads on the nacelle or tower
(19, 20), so we calculate the moment caused by the aerodynamic
force on the nacelle using the following expression adapted
from sections 5.2.1 and 5.3.1 of the DNV-RP-C205 design stan-
dard (21):

Mnacelle ¼
�Cfrontð12 ρau2

x ÞSfronthmax x̂þCsideð12 ρau2
y ÞSsidehmax ŷ Active yaw tracking

Csideð12 ρau2
x ÞSsidehmax x̂þCfrontð12 ρau2

y ÞSfronthmax ŷ No yaw tracking
; [S8]

where ux and uy are the horizontal components of wind speed
parallel to and perpendicular to the long axis of the nacelle
and x̂ and ŷ are the unit vectors in those directions. The surface
area S and shape coefficient C of the nacelle are based on the
nacelle dimensions of the comparable REpower 5M offshore tur-
bine, which is 6 m wide, 6 m tall, and 18 m long (22). The shape
factors are taken from Table 5-5 in the DNV-RP-C205 design
standard (21). The parameter values are given in Table S3.

The bending moment caused by wind load on the tower is more
complicated because the wind acts across the whole length of the
tower and because the diameter of the tower decreases with
height. We model the diameter of the tower D as a function
of height h as a linear function:

DðhÞ ¼ Dbase þ
�
Dtop −Dbase

hmax

�
h; [S9]

whereDbase is the tower diameter at its base,Dtop is the diameter
at the top, and hmax is the height of the top of the tower. The
shape coefficient for the tower, a long cylinder, is Ctower ¼ 0.5
from Fig. 6-6 in the DNV-RP-C205 design standard (21). Assum-
ing a uniform wind speed across the whole length of the tower,
the bending moment from the wind load on the tower is:

Mtower ¼ Ctower

�
1

2
ρau2

�Z
hmax

0

�
Dbase þ

Dtop −Dbase

hmax

�
h dh

¼ 1

6
Ctower

�
1

2
ρau2

�
h2
maxðDbase þ 2DtopÞ: [S10]

The contribution of the wind load on the tower is significant,
especially at higher wind speeds, as shown in Fig. S9.

Calculation of Buckling Probability. Given the magnitude M of the
maximum tower bending moments calculated above, we calculate
the probability of a turbine tower buckling by comparing the mag-
nitude of the simulated bending moments to a random variable
for the resistance of a tower to buckling.

For each load case (Active-Yawing or Not-Yawing) and mean
wind speed u, we create 5,000 bending moment values by repeat-
edly sampling the simulation results with equal probability. If no

anomalous values were excluded, there are 30 simulation values
to sample from; there are fewer if some were excluded.

We calculate 5,000 resistance to buckling valuesMcr according
to Eq. S11, the resistance to buckling of a thin-walled cylinder, by
randomly sampling the parameters from the distributions given in
Table S4 (23):

Mcr ¼
1

6

�
1− 0.84

D
t

Xy;ssFy

XE;ssE

�
ðD3 − ðD− 2tÞ3ÞXy;ssXcrFy: [S11]

The damage function D at a given 10-min mean wind speed
for a given load case (Active-Yawing or Not-Yawing) is calculated
by comparing all the sampled bending moment values to the
sampled resistance-to-buckling values to find the probability of
buckling for each 10-min mean wind speed u:

DðuÞ ¼ PrðMcr ≤ MðuÞÞ [S12]

We generalize the results calculated in Eq. S12 by fitting a log-
logistic function to the data. The form of the log-logistic function
is given by Eq. 3 in the paper.

The distribution of number of turbine towers buckled in a hur-
ricane is modeled in [4] (from the main text) by a beta-binomial
distribution. The beta-binomial distribution gives a binomial dis-
tribution for the number of turbine towers buckled in a single
hurricane, where all turbines have the same probability of buck-
ling. The assumption that all turbines have the same buckling
probability implies a strong correlation between the buckling
of the towers in the wind farm. Our results are not sensitive to
this assumption of strong correlation. Fig. S11 compares the dis-
tribution of the number of turbine towers buckled in a single hur-
ricane for two different models of correlation between tower
buckling. The model labeled “Identical turbines” in Fig. S11 is
the model we use in our paper, where the number of towers
buckled is binomial distributed and all turbines have the same
probability of buckling. We compare that model to a model that
implies a weaker correlation between turbines, labeled “Distribu-
tion of turbine properties.” In that distribution, each turbine is
exposed to different wind conditions with turbulence intensities
drawn from a lognormal distribution and each tower has a differ-
ent resistance to buckling calculated with [S11]. The results in
Fig. S11 are calculated for a mean wind speed of 70 m∕s
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(136 knots) but results for other mean wind speeds show similarly
good matches between the distributions.

Nomenclature. T ¼ time period to investigate
n ¼ number of turbines in the wind farm
u ¼ 10-min average hub height wind speed
λ ¼ rate parameter for occurrence of hurricanes
μ ¼ location parameter for distribution of wind speed in a hur-

ricane
σ ¼ scale parameter for distribution of wind speed in a hur-

ricane
ξ ¼ shape parameter for distribution of wind speed in a hur-

ricane
α ¼ scale parameter for the log-logistic distribution of the

probability of a turbine tower buckling at a 10-min average wind
speed u

β ¼ shape parameter for the log-logistic distribution of the
probability of a turbine tower buckling at a 10-min average wind
speed u

αB, βB ¼ parameters of the beta-binomial distribution for the
distribution of turbine towers buckled in a single hurricane (para-
meters are derived by fitting a beta distribution to the damage
function weighted by the probability of occurrence of wind speed)

W ¼ random variable for the maximum sustained (10-min)
wind speed of a hurricane

w ¼ a wind speed drawn from W
D ¼ random variable for the probability of turbine damage for

a given wind speed w
d ¼ a damage probability drawn from D

X ¼ random variable for the number of turbines damaged in
one hurricane

x ¼ a number of damaged turbines drawn from X
H ¼ random variable for the number of hurricanes in T-years
h ¼ a number of hurricanes drawn from H
Y rep ¼ random variable for the number of turbines damaged in

T-years with replacement
Yno rep ¼ random variable for the number of turbines damaged

in T-years no replacement
y ¼ a number of turbines damaged drawn from Y
a ¼ constant for alternative description of the Poisson distri-

bution used in Panjer recursion from (24)
b ¼ constant for alternative description of the Poisson distri-

bution used in Panjer recursion from (24)
T ¼ transition matrix for phase-type distributions
τ ¼ the time to destroy all turbines (or reach an absorbing

state) if turbines are not replaced
z ¼ number of Monte Carlo simulations
T ¼matrix of state transition intensities. The values Tij are the

probabilities of transition from state i to state j. There are nþ 1
states, where the nþ 1 state is the absorbing state

t ¼ vector of intensities of state transitions directly to the ab-
sorbing state

π ¼ starting probabilities for each state
k ¼ number of turbines in absorbing state
m ¼ an index for summation
C ¼ shape coefficient
ρa ¼ density of dry air at 20 °C
u ¼ wind speed
S ¼ surface area
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Fig. S1. Cumulative distribution of the number of towers in a 50-turbine wind farm buckled in 20 y if buckled towers are replaced after each storm if they
buckle. Dashed lines plot the distribution for the case that turbines can yaw to track the wind direction, and solid lines plot the distribution for the case that
turbines cannot yaw.
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Fig. S2. CDF of the number of turbine towers buckled in 20 y without replacement; turbines cannot yaw to track the wind. Solid lines plot the distribution
including all hurricanes, and dotted lines plot the distribution with Category 4 and 5 hurricanes excluded.
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Fig. S3. CDF of the number of turbine towers buckled in 20 y without replacement; turbines can actively yaw to track the wind. Solid lines plot the distribution
including all hurricanes, and dotted lines plot the distribution with Category 4 and 5 hurricanes excluded.
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Fig. S4. A comparison of the cumulative probability distributions of number of turbine towers buckled in 20 y for the case where turbine towers are replaced
after each storm if they buckle. Results calculated with Monte Carlo simulation are plotted as dashed lines and results calculated with a compound Poisson
distribution are plotted as solid lines.
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Fig. S5. A comparison of the cumulative probability distributions of number of turbine towers buckled in 20 y for the case where towers are not replaced if
they buckle. Results calculated withMonte Carlo simulation are plotted as dashed lines and results calculated with a phase-type distribution are plotted as solid
lines.
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Fig. S6. Comparison of empirical CDFs for maximum hurricane wind speed in the regions we examine and the GEV distributions fitted to those data.
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Fig. S7. Log-logistic functions fitted to probability of tower buckling as a function of wind speed. The vertical red line at 95 knots plots the 10-min sustained
wind speed with a 50-y return period used to design Class I wind turbines in the IEC 61400-3 standard.
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Fig. S9. Magnitude of bending moment on the tower base vs. 10-min mean wind speed. The “Blades” component of the moment is simulated using the NREL
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Fig. S10. The method for excluding anomalous simulation results for maximum tower bending moment. The red line is a robust linear best-fit to the data and
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Fig. S11. Distribution of number of turbine towers buckled in a single hurricane a mean wind speed of 70 m∕s (136 knots). Blue bars plot results for the case
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Table S1. 10-min turbulence intensities
measured for hurricanes over water

TI Measurement height Source

15% 10 m (25) Table 6
11% 10 m (16) Table 2
13% 19 m (26) Fig. 1
17% 19 m (26) Fig. 1

Table S2. 10-min turbulence intensities calculated from GFs of hurricanes over water

GF Calculated TI (10-min) Measurement height Source Notes

1.4 16% 10 m (27) Table 2
1.38 16% 10 m (27) Table 2
1.45 15% 10 m (17) Table 4 60-min averaging period
1.32 10% 44 m (17) Table 4 60-min averaging period
1.46 16% 10 m (17) Table 4 60-min averaging period
1.36 12% 10 m (17) Table 4 60-min averaging period
1.38 13% 10 m (17) Table 4 60-min averaging period
1.48 17% 10 m (17) Table 4 60-min averaging period

Turbulence intensities are related to GF by the relation TI ¼ ðGF − 1Þ∕α , where α ¼ 2.44, an average of
measured values from figure 7 in the paper by Yu, et al. (16). GF calculated from 60-min periods are
converted to 10-min periods by dividing by 1.055, as recommended by Vickery (17).
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Table S3. Parameters of wind load on nacelle

Parameter Value Description

ρa 1.21 kg∕m3 density of dry air at 20 °C
hmax 90 m tower height
Cfront 0.7 shape coefficient, nacelle front
Cside 1.2 shape coefficient, nacelle side
Sfront 36 m2 nacelle surface area, front
Sside 108 m2 nacelle surface area, side

Table S4. Parameters of resistance to buckling at the base of a NREL 5-MW turbine tower. LN ¼ log-normal
distribution, COV ¼ coefficient of variance

Variable Description Distribution type Expected value COV

Dbase tower diameter (base) - 6 m -
Dtop tower diameter (top) - 3.87 m -
t tower thickness (base) - 0.027 m -
E Young’s modulus - 210 GPa -
Fy yield stress LN 1 0.05
Xy;ss model uncertainties due to scale effects: yield stress LN 1 0.05
XE;ss model uncertainties due to scale effects: Young’s modulus LN 1 0.02
Xcr critical load capacity LN 1 0.10

Adapted from ref. 28.
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