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It is challenging to estimate the public health costs of fine particulate matter (PM2.5) and its precursor
emissions accurately and quickly for policy research because of their complex physical and chemical pro-
cesses occurring over a large downwind area. We developed a method for building statistical regressions
that estimate public health cost of emissions accurately like a state-of-the-art chemical transport model
(CTM) but without its high computational cost. This method achieves detailed spatial resolution according
to the location of the emission source, accounting for differences in the exposed population downwind.
Using tagged CTM simulations, our method builds a large dataset of air quality public health costs from
marginal emissions throughout the United States. Two methods were developed to describe exposed
population, one that assumes a generic downwind plume concentration profile derived from CTM outputs
and a simplermethod that uses the size of populationwithin certain distances as variables. Using the former
method, we parameterized marginal public health cost [$/t] and intake fraction [ppm] as a function of
exposedpopulation and keyatmospheric variables.Wederivedmodels for elemental carbon, sulfurdioxide,
nitrogen oxides, and ammonia. Compared to estimates calculated directly using CTM outputs, our models
generally show mean fractional errors of only 10%e30% and up to 50% for NOx in some seasons, which are
generally similar to or less than CTM’s performance. Our results show that the public health costs of
emissions can be efficiently parameterized for policy analyses based on state-of-the-art CTMs.

© 2016 Elsevier Ltd. All rights reserved.
of Civil and Environmental
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1. Introduction

Accurate estimation of the impact of air pollutant emissions
on society is valuable in several decision making arenas. Human
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activities such as generating electricity, heating and cooling, and
transportation emit air pollutants, imposing undesirable burdens
on humans and the natural environment. Strongly associated
with cardiovascular and cardiopulmonary premature mortality
(Pope and Dockery, 2006), fine particulate matter (PM2.5) im-
poses serious public health burdens. In 2010, ambient particulate
matter pollution was the 9th leading contributor
(3.2 Me3.3 M premature deaths/year) to the global burden of
disease (Lelieveld et al., 2015; Lim et al., 2012) and the 8th (103 k
premature deaths/year) in the United States (US Burden of
Disease Collaborators, 2013). Ambient PM2.5 consists partly of
primary (directly emitted) species, but mostly of secondary
(chemically produced from gaseous precursors) species. There-
fore, accurate estimation of air quality impacts must account for
atmospheric chemical processing, which depends on meteoro-
logical conditions and frequently exhibits nonlinear behaviors.
The major precursors for secondary PM2.5 include sulfur dioxides
(SO2), nitrogen oxides (NOx), ammonia (NH3), and volatile
organic compounds (VOCs).

A common way of quantifying the societal impacts of air
pollution is based on an impact pathway analysis that converts air
pollutant emissions to ambient concentrations, estimates their
societal effects (e.g. premature mortality and other health effects),
and monetizes these outcomes using estimates of willingness-to-
pay to avoid these effects. It is a standard method used by the
U.S. EPA in benefit-cost analyses of the Clean Air Act (U.S. EPA,
2011a, 1999) and other regulatory impact analyses. According to
analyses based on this method (U.S. EPA, 2011a, 1999; National
Research Council, 2010), premature mortality associated with
PM2.5 accounts for more than 90% of the monetized damages of air
quality on public health and the environment. Therefore, policy
analyses often focus on the mortality effects of PM2.5.

A convenient measure to estimate the social cost of emissions
is marginal social cost, which is public health cost caused by
“marginal,” or relatively small, amount of emissions, or marginal
social benefit in case of marginal emission reductions. For inert
primary PM2.5 species, marginal benefit and marginal cost would
have the same magnitude and public health cost is expected to be
proportional to the amount of increased emissions when the
characteristics of population exposure and meteorology are held
constant. For secondary species with nonlinear behaviors, mar-
ginal effects may differ depending on whether emissions increase
or decrease or whether baseline emissions of related species
change. However, there would be a certain range of marginal
emissions where marginal effects stay similar. For policy in-
terventions that result in such marginal changes, their social cost
can be easily calculated by multiplying marginal social cost by the
change in emissions.

Intake fraction is a similar measure widely used to quantify the
public health effects of emissions (Bennett et al., 2002). For atmo-
spheric emissions, intake fraction is defined as the fraction of
emissions that are inhaled by an exposed population. Compared to
social cost, intake fraction focuses on characterizing the relation-
ship of emissions to population exposure.

Policy research often requires quickly comparing many
different policy options and exploring associated uncertainties.
Current air quality tools face significant limitations in achieving
this goal. Current tools may be divided into three categories. First,
chemical transport models (CTMs) such as CAMx (ENVIRON,
2012) and CMAQ (Byun and Schere, 2006) are the most
rigorous tools for simulating air quality. CTMs divide the atmo-
sphere into a three-dimensional grid and attempt to simulate all
the relevant processes of pollutant transport, chemical reaction,
and removal of particles and gases in the atmosphere. Because
CTMs are computationally expensive, several CTM add-ons were
developed to enhance computational efficiency such as Particu-
late Source Apportionment Technology (PSAT) (Koo et al., 2009;
Kwok et al., 2015; Wagstrom et al., 2008), Direct Decoupled
Method (DDM) (Dunker et al., 2002; Koo et al., 2007), and Adjoint
(Hakami et al., 2007; Henze et al., 2007). PSAT puts tags on
emission sources to track their contributions at multiple receptor
locations. DDM allows to find sensitivity of emission sources and
parameters to results at multiple receptors. Conversely, Adjoint
method calculates sensitivity of changes in receptors to sources
and parameters. However, being still computationally
demanding, these sensitivity techniques may reduce CTM’s
computational burden one or two orders of magnitude but not
more than that. Because running CTMs with or without such an
add-on are computationally expensive, they are often employed
for a limited number of scenarios even for important regulatory
impact analyses.

Second, tools such as COBRA (U.S. EPA, 2013) and APEEP/AP2
(Muller, 2011; Muller and Mendelsohn, 2009) estimate social costs
for all (~3000) U.S. counties using the Climatological Regional
Dispersion Model (CRDM) (Latimer, 1996), which a CTM would
require roughly 6000 CPU-years to generate according to our back-
of-envelop calculation. However, Gaussian dispersion models such
as CRDM have fundamental limitations. They assume that meteo-
rological conditions at the source are held constant for all down-
wind areas, posing potential problems in predicting secondary
PM2.5 formations. These dispersion-based models have at best
simple treatments of inorganic PM2.5 formation chemistry and rely
on an outdated understanding of organic PM2.5 formation from
volatile organic compounds, which has substantially revised in
recent years (Robinson et al., 2007).

Lastly, there are per-ton social costs estimated by a statistical
model built using CTM outputs (Fann et al., 2009; U.S. EPA, 2006)
and by directly using CTM simulations (Fann et al., 2012; U.S. EPA,
2014). However, due to their CTM’s high computational costs,
their estimates are limited to certain urban areas and/or national
averages for a selected set of sectoral emissions. Therefore, they do
not provide a high spatial resolution according to emissions source,
which is frequently useful in policy research. In short, because of
current tools’ limitations, a large part of policy research community
is not able to incorporate the latest atmospheric science into their
work.

In this paper, we present a new method called Estimating Air
pollution Social Impacts Using Regression (EASIUR). The goal of
the EASIUR method is to overcome the limitations noted above
by deriving parameterizations that estimate marginal social costs
[$/t] and intake fractions [ppm] from a large dataset of tagged
simulations created by a CTM. The parameterizations provide a
high spatial resolution similar to the county scale of CRDM and
their outcomes produced with negligible computational costs are
very similar to CTM-based estimates. As a proof of concept, we
present the method and evaluation of the EASIUR model for one
primary PM2.5 species (elemental carbon) and three secondary
inorganic PM2.5 precursor species (sulfur dioxide, nitrogen ox-
ides, and ammonia) for four seasons and for three emission
heights: ground-level area emissions and two stack-height
(150 m and 300 m) point sources. This paper focuses mainly on
marginal social cost and most equivalent parts associated with
intake fraction are included in the Supporting Information (SI).
Challenges that are addressed in this study include finding
methods to estimate downwind exposed populations, assessing
the length of CTM simulations required, and finding methods that
account for seasonal and other differences in atmospheric pro-
cessing. EASIUR model’s estimates and associated uncertainties
are presented and discussed comprehensively in a separate study
(Heo et al., 2016).
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2. Method

2.1. Overview

The EASIUR method addressed technical challenges of compu-
tationally efficient but precise atmospheric modeling in several
ways. First, for up-to-date atmospheric modeling, we employ a
state-of-the-art CTM to estimate air quality changes, social costs,
and intake fractions from marginal emissions at 100 randomly
selected locations in the United States. Second, to reduce the
computational costs of these simulations, we employed a tagged
simulation technique and looked at the simulation period required
to represent a season. Third, for quantifying dilution and popula-
tion exposure occurring over a large downwind (hundreds of ki-
lometers or more) area, we developed two methods. Lastly, we
derived regression models that parameterize marginal social costs
and intake fractions using exposed population metrics and atmo-
spheric variables. We validated the model performance with out-
of-sample tests. In the following, we described the details of
model development.
2.2. Tagged air quality simulation with a chemical transport model

To predict PM2.5 formation and impacts, we ran a regional-scale
chemical transport model, the Comprehensive Air Quality Model
with extensions (CAMx) (ENVIRON, 2012) using inputs developed
for a major regulatory impact analysis (U.S. EPA, 2011b). CAMx
simulates the formation, chemical transformation, transport and
removal processes of primary and secondary PM2.5 and their pre-
cursors (ENVIRON, 2012). The modeling platform has been
comprehensively evaluated and showed good performance for
estimating the PM2.5 concentrations associated with elemental
carbon, sulfur dioxides, nitrogen oxides, and ammonia, which are
the species of our interest in this study (U.S. EPA, 2011c).

The model domain covers the contiguous United States and
adjacent portions of Mexico and Canada with a horizontal grid
resolution of 36 km � 36 km and 14 vertical layers reaching 16 km
high. Due to long transport nature of PM2.5 and precursors, the
36 km resolution may have small (~10%) biases compared to finer
resolutions such as 12 km and 4 km (Arunachalam et al., 2011;
Punger and West, 2013; Thompson et al., 2014). The emission in-
ventory (U.S. EPA, 2011d) was created for year 2005 and includes
emissions from Mexico and Canada. Meteorological input data for
2005 were generated by MM5 (Grell et al., 1994). The initial and
boundary conditions were generated by GEOS-Chem, a global-scale
chemical transport model (http://acmg.seas.harvard.edu/geos/).

The Particulate Matter Source Apportionment Technology
(PSAT) (Koo et al., 2009; Wagstrom et al., 2008), a CAMx module,
played an important role in generating our dataset efficiently.
With PSAT, we simulated the changes in PM2.5 concentrations
from marginal air pollutant emissions by tagging emissions from
50 different locations in a single CAMx run. PSAT reduced
computational time and disk space by a factor of 10 compared to
the brute-force method of separate CAMx simulations for each
marginal emissions perturbation. Although PSAT does not
address indirect effects by design (e.g. more atmospheric oxi-
dants from reducing NOx may increase more sulfate PM2.5 for-
mation) (Koo et al., 2009), our PSAT setup takes indirect effects
into account at least for the size of perturbations we chose
because we compare two sets of PSAT simulations, one with
baseline emissions and the other with perturbed emissions, and
our sensitivity simulations show that potential biases from in-
direct effects are small over a wide range of perturbations, as will
be described more below.
2.3. Marginal social cost

We used a standard impact pathway method to calculate the
per-tonne social costs. Once a CTM calculates the changes in PM2.5
concentrations on annual average (Dcx,y in mg/m3) at each grid cell
(x, y) of the simulation domain from given emissions, the changes
in mortality (Dyx,y in number of premature deaths) at each down-
wind location are estimated by a health-impact function, Eq. (1)
(Hubbell et al., 2005; U.S. EPA, 2015a):

Dyx;y ¼ y0x;y$
�
1� exp

�
� ln R

10
$Dcx;y

��
(1)

where y0x;y is the baseline mortality at (x, y), or the product of the
baseline mortality rate and the population at (x, y), and R is the
relative risk reported by epidemiological studies, that is, the
changes in mortality rate over an increase of 10 mg/m3 in PM2.5
concentrations. U.S. EPA usually uses two relative risks, 1.06 from
Krewski et al. (2009) and 1.14 from Lepeule et al. (2012), due to pros
and cons of cohorts of the two studies (Krewski et al., 2003; U.S.
EPA, 2011a). Among the two, we chose 1.06 for our modeling.
However, we by no means endorse this value over the other. To
make our method flexible, we provide an easy method in SI to
adjust our results over a reasonable range of relative risk.

The next step is to valuate the changed mortality using Value of
a Statistical Life (VSL in $). The per-tonne social cost (S in $/t) is
calculated as follows:

S ¼
P

x;yDyx;y$VSL
E

(2)

where E is the amount of annual emissions (in metric ton). We used
$8.6 million in 2010 USD for VSL, which is a U.S. EPA-recommended
value adjusted for 2005 income level. We show how to adjust our
estimates for dollar year and income level and discuss timing of
premature death after exposure to PM2.5 in SI. Intake fraction is
defined in SI.
2.4. Building a dataset

We built a dataset of marginal social costs and intake fractions
using tagged CAMx simulations. The procedure is illustrated in
Fig. 1 using a case for elemental carbon in summer. The twometrics
were calculated using a size of marginal emissions, which is chosen
after exploring a wide range.

First, we selected two sets of 50 CAMx source cells randomly
based on the population in the CAMx grid. One set was used for
building regression models and the other is held out for out-of-
sample evaluation. Since social costs are largely determined by
the number of people exposed in the surrounding region, we
covered different population sizes by selecting five locations
randomly at every 10th percentile by population size among non-
zero population cells to select 50 locations per set. The same
locationwas not selected for both sets. We used population in 2005
prepared for the CAMx grid using PopGrid version 4.3 and BenMAP
Community Edition version 1.1 (both available at http://www2.epa.
gov/benmap). To match the cohort age of the chosen
concentration-response relation, we used only adult population of
age 30 or older. In SI, we presented how to adjust our estimates for
population and mortality rate in a different year.

Second, CAMx PSAT was run for a base case and marginal
emission cases for the entire year of 2005. The marginal cases were
run by adding a carefully chosen amount of emissions for each
species in addition to the baseline 2005 emissions inventory. Above
a certain size of emissions, the PM2.5 increase per emissions may

http://acmg.seas.harvard.edu/geos/
http://www2.epa.gov/benmap
http://www2.epa.gov/benmap


Fig. 1. Three steps of building a dataset for parameterization. For (b) and (c), the case of elemental carbon in summer is shown for illustration. (a) Two sample sets of 50 locations
(one set for building models and the other for testing) were created randomly based on population size in the CAMx grid. (b) Distributions of PM2.5 concentration created by
marginal emissions for all sample locations (shown here together to illustrate) were produced from tagged CTM simulations. (c) Marginal social costs (shown here) and intake
fractions were calculated using a standard impact pathway method for each location.
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change due to nonlinearities in the chemistry (Ansari and Pandis,
1998) and, as a result, estimated marginal effects may not be
valid anymore. Conversely, if the size of additional emissions is too
small for the numerical precision of CAMx, model results may
become unreliable due to numerical round-off noise.

In order to determine a proper size for a marginal emissions
perturbation, we calculated social costs over a wide range of per-
turbed emissions. We ran CAMx PSAT simulations with ground-
level emissions of E� 4k (k¼�4,…, 1) added at each training
sample. E is the annual-average emissions (of both area and point
sources) among non-zero emission cells in the CAMx grid. Then, we
ran each simulation for January and July, the two most meteoro-
logically contrasting months. After analyzing the results, we chose
E� 4�2 as the size of marginal emissions in our modeling (EC:
6.6 kg/cell/day, SO2: 190 kg/cell/day, NOx: 270 kg/cell/day, and NH3:
69 kg/cell/day), which corresponds to an emissions increase by
6.25% of the per-cell annual-average emissions. Sensitivity to this
value is analyzed below in Section 3.1. Then, CAMx was run for the
marginal emission cases at the ground level for the entire year for
both training and testing sample sets. Here we define winter from
January to March, spring from April to June, summer from July to
September, and fall from October to December. Considering the
stack height distribution of current power plants, which goes up to
370 m high, we additionally ran marginal cases for two stack
heights: 150 m and 300 m. For elevated emissions, we ran simu-
lations only for the 50 training locations and did validations
differently (Section 2.5.3). We simulated additional 10 days prior to
all our simulations but did not include in the analysis to prevent
results from being distorted from initial conditions.

Finally, the changes in PM2.5 concentrations from marginal
emissions against the base case were calculated for all sample lo-
cations. While we calculated the changes for inert EC using EC
concentration outputs only, we used all PM2.5 species for three
inorganic pollutants (SO2, NOx, and NH3), which will take into ac-
count relevant chemical reactions associated with the marginal
addition of each inorganic pollutant. Then, marginal social costs
and intake fractions were calculated for each location for each
season as described in Section 2.3.
2.5. Model derivation

2.5.1. Regression approach
Because most variables are highly skewed as shown in

Figs. S3eS6, the EASIUR models were fit with a log-log functional
form as follows:
ln S ¼ aþ b$ln P þ
X
i

gi$ln Ai þ ε; i ¼ 1;…; k (3)

where S is the per-tonne social cost [$/t] or intake fraction [ppm], P
is the exposed population (described in Section 2.5.2), and Ai’s are
atmospheric variables. The a, b, and gi parameters are regression
coefficients and 3is the error term. For Ai, we tried several variables
from the MM5 meteorological fields: temperature [K], surface at-
mospheric pressure [hPa], wind speed [m/s], absolute humidity
[ppm], precipitation water content [g/m3], cloud optical depth
(dimensionless), and vertical diffusivity [m2/s]. We used seasonal
average values for all atmospheric variables.

To capture the nonlinear interactions between SO2, NOx, and
NH3 (Ansari and Pandis, 1998; West et al., 1999), we additionally
tried the following atmospheric parameters: total sulfate
(TS≡SO2�

4 ½mol=m3�), total nitrate (TN≡HNO3 þ NO�
3 ½mol=m3�),

total ammonia (TN≡HNO3 þ NO�
3 ½mol=m3�), free ammonia

(FA≡TA� 2$TS ½mol=m3�), the gas ratio (Ansari and Pandis, 1998),
and the adjusted gas ratio (Pinder et al., 2008). In this context,
“total” refers to the sum of concentrations in both gas and particle
phases.

We fitted Eq. (3) with the training sample dataset for all possible
combinations of explanatory variables. We used the Akaike infor-
mation criterion (AIC) to select the best models, which favors the
goodness of fit but also penalizes for the number of parameters to
discourage overfitting (Akaike, 1974).

2.5.2. Methods of describing population exposure
It is crucial and challenging to parameterize in an efficient way

the population exposed to PM2.5 from marginal emissions. In gen-
eral, population near an emission source is exposed to higher
concentrations of air pollutants than those far from the source.
However, despite lower concentrations, the potential size of
exposed population may be much larger in areas far from the
source, and PM2.5 as its precursors can be transported hundreds of
kilometers. Because different species undergo different atmo-
spheric chemical processes, the magnitude and extent of their
impacts are different, which makes it more complicated to char-
acterize the population exposure. Therefore, a successful approach
for dealing with this should weight population nearer a source
more heavily and to address different species differently.

We tried to accomplish this goal of describing the varying
population exposure around an emission source with two
methods: “average plume” and “population ring” methods. As we
found that the average plume method works better than the other,
we built our final models with the average plume method.
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The average plume describes the spatial distribution of PM2.5
impacts around an emissions source, accounting for transport,
dispersion, chemical conversion, and removal in the downwind
region. The average plumes are generic downwind concentration
profile derived from CTM simulations in order to assess population
exposure. To generate an average plume, the spatial distribution of
PM2.5 impacts for all 50 training samples were: 1) translated in
space so that they all had their emissions sources at a common
origin location; 2) rotated so that the prevailing wind directions
were in the same direction; 3) normalized so that the PM2.5 con-
centrations summed across all grid cells is one. After these pro-
cedures, the 50 plumes were averaged to obtain a generic spatial
distribution of PM2.5 impacts, which we refer to as an “average
plume,” and indicate the fraction of the total PM2.5 impact to be
expected at downwind grid cells. A separate average plume is
generated for each species emitted and season of the year. A
weighted population, P in Eq. (3), is calculated by placing an
average plume at a source location of interest and aligning the
plume according to the dominant wind direction. The exposed
population, P, is the sum of populations in each grid cell weighted
by the average plume.

The other method is the “population ring” method. It uses the
population within a certain distance from an emission source as a
variable representing exposed population similarly as tried in some
studies (Buonocore et al., 2014; Levy et al., 2009). This method is
more described in SI.
2.5.3. Model evaluation
For the chosen regression models, we evaluated the ground-

level emission models with the 50 test samples and the elevated
emissionmodels with a five-fold cross-validationmethod. The five-
fold procedure randomly divided the 50 samples into five groups or
“folds.” Regression models were built using four groups and vali-
dated with the remaining group. It was then repeated five times
with each group as a validation fold.

We adopted the model performance criteria suggested by
Morris et al. (2005), which is commonly used to evaluate prediction
of chemical transport models against measurement. The criteria are
based on mean fractional bias and mean fractional error:

Mean fractional bias ¼ 2
N

XN
i

Pi � Oi

Pi þ Oi
(4)

Mean fractional error ¼ 2
N

XN
i

����Pi � Oi

Pi þ Oi

���� (5)

where Pi is the EASIUR prediction from Eq. (4) above, Oi is the “true”
estimate directly computed with CAMx outputs, and N is the
number of test samples. Performance is considered “excellent” for
fractional bias �±0.15 and fractional error �0.35, “good” for frac-
tional bias �±0.3 and fractional error �0.5.
3. Results and discussion

3.1. Size of marginal emissions

We found that per-tonne social costs are insensitive to the size
of perturbation over most of the wide range we tested, shown in
Fig. S1. Marginal social costs of EC did not change much for the
entire range we tested, which is expected because EC is inert. For
SO2, NOx, and NH3, they did not change much for E$4�2 or larger.
The deviations shown for smaller emissions perturbations, E$4�3

and E$4�4, are attributable to numerical noise and round-off error.
If the emissions perturbations are too large, visibly nonlinear re-
sponses would result, and the social costs could not be considered
“marginal.” This would be visible in Fig. S1 as a skewing of the
results away from 1 for the larger emissions perturbations. For the
most part, there is no evidence of that being a problem for the
emissions perturbations explored here except some mild de-
viations for NOx and NH3 near themaximum, E$41. For these largest
emissions perturbations, social costs for NOx and NH3 are slightly
but systematically lower than smaller emissions perturbations. This
behavior is consistent with known atmospheric chemistry; as the
amount of ammonia or nitric acid increases, it is more likely to be
stoichiometrically in excess so themarginal effect of addingmore is
decreased. Intake fractions also showed essentially the same re-
sults. We conclude that the size of the emissions perturbations
imposed on the model may be considered “marginal” in the sense
that they are large enough to avoid spurious numerical noise but
small enough not to change the chemical regime appreciably. The
results also show that indirect effects outside of our chosen
perturbation size (See Section 2.2) do not produce big biases within
the wide range of perturbations.

3.2. Description of the generated dataset

Monthly marginal social costs and intake fractions calculated
directly using CAMx output for the 100 sample locations are pre-
sented in Fig. 2 and S2. When deriving parameterizations, we used
social costs and intake fractions calculated for the period of each
season as defined in Fig. 2(a). Marginal emissions of NOx in one
rural training location in spring and a remote test location in
summer decreased PM2.5 concentrations, resulting in negative
marginal social costs and intake fractions. Looking at the two
samples closely, we determined that they are caused by numerical
noise. These two unusual samples were not includedwhen deriving
the regression models.

To give a sense of the distributions and correlations of selected
variables, correlation matrix plots of selected variables for marginal
social cost models are presented in Figs. S3eS6. The maps of
meteorological variables we used in parameter-
izationsdtemperature, surface atmospheric pressure, absolute
precipitation, wind speed, humidity, total sulfate, total nitrate, and
total ammoniadare presented in Figs. S7eS14.

3.3. Average plumes

The average plumes are illustrated in Fig. 3 using the summer-
time results as an example. Fig. S15 shows the complete set of
seasonal average plumes. Emissions of all four species have long-
range impacts extending over regions larger than 1000 km, but
the impacts of SO2 and NOx emissions are somewhat wider than EC
and NH3. This is consistent with the fact that SO2 and NOx must
undergo atmospheric oxidation before PM2.5 formation, so their
impacts are necessarily more diffuse. Based on these average plume
distributions, our method describes the size of exposed population
by putting larger weight on population nearby sources and
diminishing weights on populations as one moves far from the
original source. It is clear from these results that very localized
measures of population, such as population density in the source
county or grid cell, would fail to describe the exposures resulting
from these sources. The population ring method, an alternative
method of describing exposed population, is presented and
compared in SI.

3.4. Parameterization results

Because we present many regression models (96 in total from 2



Fig. 2. Marginal social costs at the 100 sample locations. Winter is defined as January to March, spring as April to June, summer as July to September, and fall as October to
December. The bottom and top of the box are the first and third quartile, and the red band inside the box indicates median. Whiskers show 1.5 � IQR (interquartile range) below the
first quartile and beyond the third quartile. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Average plumes for ground-level emissions in summer. Although the average plume distributions are generic, to illustrate a sense of scale, they are placed on a map with
Pittsburgh at the center. Average plumes are skewed to the right from wind direction, which is caused by the rotation of the Earth, or the Coriolis effect.
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marginal effects, 4 species, 4 seasons, and 3 emission elevations),
we mainly discuss results from marginal social cost models for
ground-level emissions, but models for elevated emissions show
very similar results. Table 1 presents coefficients and statistics from
regressions for marginal social costs in summer. A complete set of
results for all seasons and all emission elevations is shown in
Tables S1eS3 for marginal social cost and in Tables S4eS6 for intake
fraction. Overall, the regression models show a high goodness of fit.
The value of adjusted R2 is 0.9 or higher for most models; 0.7 or
higher in fall for SO2 model, in winter, summer, and fall for NOx
model; and 0.5 for winter SO2 models. While winter SO2 models
have the lowest adjusted R2 values, winter SO2 shows the least
variability in social costs (Fig. 2). Prediction intervals for all models
are tight; they are within a factor of two except for some NOx
models that are up to a factor of three. A prediction interval mea-
sures the expected error between CAMx and EASIUR social costs at
a single specific location (e.g. a single model grid cell) whereas the
confidence interval would be a measure of uncertainty in predicted
social costs when averaged over an ensemble of similar locations.

All the models show good performance from out-of-sample
tests. In Fig. 4, estimates with EASIUR are compared to those
calculated directly using CTM results for the 50 test samples in
summer. The out-of-sample evaluations are summarized in Fig. 5,
which is based on the criteria (Morris et al., 2005) using fractional
bias and fractional error that evaluates the performance of chemical
transport models against measurements. All the seasonal models
meet the “excellent” criteria with two exceptions, NOx models for
summer and fall, meeting the “good” criteria. The fractional errors



Table 1
Marginal social cost models for summer season.

EC SO2 NOx NH3

Intercept 83*** 74*** 230*** �12
(11) (14) (32) (8.6)

ln (Popw) 0.78*** 0.56*** 0.81** 0.84***
(0.034) (0.075) (0.23) (0.079)

ln (Temp) �21*** �20*** �53*** e

(2.1) (2.9) (5.7) e

ln (Pres) 5.6*** 7.3*** 9.9*** 4.2**
(0.52) (0.58) (1.7) (1.3)

ln (Humi) e �0.74** e �1.2***

e (0.22) e (0.32)

ln (Prec) e e �0.19* 0.24***

e e (0.069) (0.057)

ln (Wind) e e �0.19 �0.14þ

e e (0.13) (0.076)

ln (TS) e 0.23þ e 1.1***

e (0.13) e (0.18)

ln (TN) e e 0.43þ �0.30*

e e (0.22) (0.15)

ln (TA) e �0.15*** e �0.43***

e (0.033) e (0.059)

Adj. R2 0.97 0.94 0.86 0.93
F. Bias �0.0068 0.069 0.076 �0.061
F. Error 0.16 0.23 0.49 0.28
95% PI [0.66, 1.5] [0.68, 1.5] [0.31, 3.2] [0.49, 2.1]
95% CI [0.89, 1.1] [0.86, 1.2] [0.66, 1.5] [0.75, 1.3]

***p < 0.001, **p < 0.001, *p < 0.05, þp < 0.1, Standard deviations in parentheses.
Popw: population (� age 30) weighted with average plume [# of people]. Temp:
temperature [K]. Pres: surface atmopsheric pressure [hPa]. Humid: humidity [ppm].
Prec: precipitation þ0.0002 (shifted for log transformation) [g/m3]. Wind: wind
speed [m/s]. TS: total sulfate (¼[SO4

2e]) [mmol/m3]. TN: total nitrate
(¼[HNO3]þ [NO3

e]) [mmol/m3]. TA: total ammonia (¼[NH3]þ [NH4
þ]) [mmol/m3]. Adj.

R2: adjusted R2. F. Bias: mean fractional bias. F. Error: mean fractional error. 95% PI:
average 95th prediction intervals relative to predicted value. 95% CI: average 95th
confidence intervals relative to predicted value.

Fig. 4. Out-of-sample evaluations of EASIUR marginal social cost models for summer. Dashed lines indicate a factor of two and solid line indicates unbiased prediction. Orange bars
show 95% prediction intervals and blue bars show 95% confidence intervals. Mean fractional bias and mean fractional error are shown at the bottom right corner. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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are quite similar in magnitude to the corresponding fractional error
metrics between CTMs and observed concentrations of PM2.5 spe-
cies, suggesting that the additional error due to the regression
process is acceptable, given the convenience of having a reduced-
form model, compared to the error in the full CTM itself. It is also
unsurprising that NOx social costs are the most difficult to param-
eterize. In PM2.5 modeling, it is understood that nitrate is the most
difficult component of PM2.5 to predict well (Karydis et al., 2007;
U.S. EPA, 2011c) as it depends on sulfate and ammonia concentra-
tions as well as nitric acid and also on both gas-phase oxidation and
gas-particle partitioning processes. We also stress that the NOx
social costs are lowest in summer, and the NOx model performs
best in winter when NOx emissions and PM nitrate are most
important.

The coefficients of parameters show their role in explaining
exposed population and atmospheric processes, although many
parameters are correlated and their coefficients do not allow
straightforward physical interpretations. The high correlation, it
should be noted, is not problematic for us becausewe are interested
in predicting dependent variables (marginal social cost or intake
fraction) rather than deriving the unbiased coefficients of explan-
atory variables. However, correlations do suggest that the regres-
sion models developed here for the United States could not be
simply translated to other regions. In most models, weighted
population, temperature, and atmospheric pressure appeared very
significant with p value of 0.001 or less. As expected, weighted
population is positively correlated, representing the size of exposed
population, which is shown in the correlation matrix plots in
Figs. S3eS6. An exception is SO2 in winter; SO2 is a long transport
species, its photo-oxidation to sulfate PM2.5 is weakest, and,
therefore, SO2 social costs are smoothed over the population vari-
ability. Temperature is negatively correlated in all models. This
likely represents that the higher temperature the higher boundary
mixing layer height, which results in more vertical dilution of
PM2.5, or lower PM2.5 concentrations and exposure. Surface atmo-
spheric pressure is positively correlated. The pressure values we
used are not sea level adjusted and strongly correlated with surface
elevation as can be seen in Fig. S8. This suggests that pressure may
be functioning here as a proxy variable for population because
population density is lownot only in themountainous areas such as
the Rocky Mountains and the Appalachian Mountains but also in
the high plateaus such as the Great Basin and the Great Plains while
many densely populated urban areas are in coastal or other rela-
tively low-lying areas. The correlation plots confirm that pressure is
correlated with weighted population.
Precipitation, wind speed, and humidity appear in many re-

gressions, though they are often not statistically significant. Pre-
cipitation generally has negative coefficients, indicating its role in
wet deposition, the dominant PM2.5 removal mechanism. An
exception is summer NH3 models; this may result from higher
humidity favoring the formation of ammonium nitrate PM. Wind
speed generally has negative coefficients. Though it may be partly
related with the role of wind in dispersion, wind speed is also to be
negatively correlated with population density, as shown the
consistent negative correlations with population variables in



(a) Ground-level emissions (b) Elevated emissions at 150m (c) Elevated emissions at 300m

Fig. 5. Cross-validation of marginal social cost models. Wi, Sp, Su, and Fa correspond to winter, spring, summer, and fall, respectively. “Excellent” and “Good” model performance
criteria are shown as suggested by Morris et al. (2005). Fractional biases and errors of ground-level models were calculated with the 50 test samples and those of elevated emissions
with a five-fold cross-validation method.
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correlation plots. Fig. S11 also shows that the windy areas are
located along the Rocky Mountains as well as some less-populated
parts of the Midwest. Humidity generally has positive coefficients,
especially for SO2 and NOx in winter and fall. This appears to be
related with atmospheric oxidation because there are generally
more oxidants like hydroxyl radical when humidity is high.

For inorganic species, total sulfate, total nitrate, and total
ammonia are found to be significant parameters in many models.
They are highly correlated with each other as well as with weighted
population and atmospheric pressure, as shown in the correlation
matrix plots. Therefore, the three inorganic parameters may partly
describe exposed population. However, it appears that some co-
efficients represent atmospheric chemistry. TS has negative co-
efficients in SO2 and NOx models in winter and fall seasons, when
atmospheric oxidants are limited than other seasons. The higher TS
may indicate the limited availability of atmospheric oxidants for
SO2 or NOx oxidation. For NOx models in winter and fall, TS may
additionally represent the phase partitioning thermodynamics of
PM2.5 (Ansari and Pandis, 1998). The higher TS would limit NOx to
form PM nitrate formation in cold seasons.
3.5. The length of CTM simulation period

Although we simulated awhole-year period, it is useful to know
the length of CTM simulation required to achieve a seasonal
average given that the CTM simulations are computationally
Fig. 6. Fractional error and bias of marginal social costs using different simulation periods a
can represent a season, marginal social costs calculated using periods of two weeks, four we
each point indicates the simulation period in week. “Excellent,” “Good,” and “Average” crit
expensive. In Fig. 6, marginal social costs calculated using periods of
two weeks, four weeks, and eight weeks in the middle of each
season were compared to those using the entire season period.
More detailed boxplots are presented in Fig. S17. According to the
results, a two-week period is sufficient for EC to represent its cor-
responding season because it falls in “excellent” range compared to
entire season periods. For other secondary species, a two- or four-
week period generally appears sufficient (“excellent” or “good”
compared to entire seasons) except Fall NH3. Fall NH3 showed
relatively large biases and errors because short mid-season periods
of the fall season form much less nitrate ammonium PM than the
end of the season (December), which can be seen in Fig. 2(d). This
result will be useful for further reducing computational burden
associated with EASIUR development and evaluation in the future.
3.6. Adjusting EASIUR estimates for important parameters

Though EASIUR models assume reasonable fixed values for
several important parameters associated with relative risk, popu-
lation, baseline mortality rate, dollar year and income level for VSL,
and PM2.5 mortality lag structure, it is often necessary to use
different values for these parameters. Doing so will be useful not
only for producing estimates with different values for these pa-
rameters, but also for uncertainty analysis associated with these
factors. We discussed each parameter in detail and presented
simple methods for adjusting for these parameters in SI.
gainst the full seasonal periods. In order to explore the length of simulation period that
eks, and eight weeks are compared to those using a full season period. The number at
eria from Morris et al. (2005) are shown as reference.
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4. Conclusions

We developed the Estimating Air pollution Impact Using
Regression (EASIUR) model, which estimates the social cost of
emissions like a state-of-the-art chemical transport model but
without high computational costs. Our method employed a CTM so
that our results are consistent with up-to-date atmospheric sci-
ence. This is the first time that a set of CTM-derived impact metrics
are presented for use in policy assessments with high spatial res-
olution (36 km or approximately county scale) according to source
location.

Accomplishing this objective required efficient means to
address several challenges. Tagged simulations allowed us to create
computationally efficiently a large dataset of marginal public health
costs and intake fractions for a carefully chosen size of “marginal”
emissions at 100 random locations in the U.S. In order to describe
population exposure occurring at large downwind areas, we
developed the average plume method and the population ring
method. We chose the average plume method because it generally
worked better. Finally, regression models were built to parame-
terize marginal social cost and intake fraction with exposed pop-
ulation and key atmospheric variables. Fractional errors of the
models’ estimates of marginal social cost and intake fraction
against the computationally expensive CTM-based estimates are
mostly 10e30% and up to ~50% for some NOx models, which is
comparable to or less than those of CTM outputs against mea-
surement. Considering CTM’s uncertainty, our method, therefore,
would estimate the public health effects without adding large un-
certainties from air quality modeling.We also found that about 2e4
week simulation periods will be able to represent a season for
elemental carbon and inorganic gases so that the CTM may not
need to be run for the entire season period.

In this paper, we focused on developing and evaluating the
methods for deriving the EASIUR model of four species (EC, SO2,
NOx, and NH3) for four seasons and for three elevation heights. The
EASIUR model results are currently provided in the Internet:
<http://barney.ce.cmu.edu/~jinhyok/easiur/>. In a separate paper
(Heo et al., 2016), we present marginal social costs and intake
fractions estimated by the EASIUR model for across the United
States, detailed discussion of uncertainties, and comprehensive
comparisons to other studies. We also plan to derive EASIUR based
on the 2014 National Emissions Inventory (U.S. EPA, 2015b) in near
future.
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