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a b s t r a c t

Reanalysis data sets have become a popular data source for large-scale wind power analyses because
they cover large areas and long time spans, but those data are uncertain representations of “true” wind
speeds. In this work we develop a model that systematically quantifies the uncertainties across many
sites and corrects for biases of the reanalysis data. We apply this model to 32 years of reanalysis data for
1002 plausible wind-plant sites in the U.S. Great Plains to estimate variability of wind energy generation
and the smoothing effect of aggregating distant wind plants. We find the coefficient of variation (COV) of
annual energy generation of individual wind plants in the Great Plains is 5e12%, but the COV of all those
plants aggregated together is 3.0%. The year-to-year variability (of interest to system planners) shows a
maximum step change of ~10%, and the wind power varies by ±7.5% over a 32-year period. Similarly, the
average variability of quarterly cash flow to equity investors in a single wind plant is 29%, but that can be
reduced to 18e21% by creating small portfolios of two wind plants selected from regions with low
correlations of wind speed.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Wind power is generating an increasing fraction of electricity in
many countries and affecting electrical system operation and
planning. Long-term wind data are important for predicting these
effects. For developers and financers, long-term data reduce un-
certainty about the expected revenues of a proposed wind plant.
For electrical grid operators and planners, long-term data make it
possible to estimate the probabilities of rare events, such as
extreme low winds that necessitate conventional power plants as
backup. Long-term data are also necessary to assess trends and
cycles in wind resource.

Meteorological monitoring stations have collected data for
many decades, but those data have several characteristics that
make them problematic for wind power analyses [1]. First, mete-
orological stations measure wind speeds at 8-m or 10-m height,
which is far below the 60e100 m hub heights of utility-scale wind
turbines. It is possible to extrapolate measured wind speeds to
those heights, but such extrapolations are uncertain because
meteorological stations do not typically measure variables such as
atmospheric stability and surface roughness that are required to
calculate the vertical wind profile. Second, meteorological stations
are often not located near areas well-suited for wind power
development; in the U.S. most stations are located at airports. Third,
observations contain errors and gaps in coverage, especially data
collected manually before automated stations were deployed [2].
Finally, measurement instruments, station locations, and sur-
rounding land cover sometimes change, which make it difficult to
compare measurements from a single site taken in different
periods.

Because of these problems with historical data, many wind
power researchers have turned to reanalysis data, which interpo-
late meteorological observations in space and time using numerical
weather prediction models. Recent examples include NARR [3],
ERA-40 [4], MERRA [5], and the Climate Forecast System Reanalysis
(CFSR) we use in this work [6]. Reanalysis data sets are attractive
because they span several decades, contain observations for vari-
ables, locations, and times not recorded in historic data, and have
uniformly-good data quality and no missing observations [1]. Re-
searchers have used reanalysis data for wind resource assessment,
long-term trends [7,8], long-term variability [9], geographic
smoothing [10e12], and extreme winds [13]. However, the rela-
tively low spatial resolution of reanalysis models smooths local
terrain features that enhance wind speed. This means that rean-
alysis data is likely to somewhat under-predict measured wind
speeds at a particular location.

Relatively few of the researchers who use reanalysis wind
speeds have validated those data against historical data.
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Researchers who compare reanalysis-predicted wind speeds at 10-
m height to historical measurements from meteorological stations
find significant uncertainties: RMS error of 2.5e3 m/s for surface-
level winds in NARR [3], correlation coefficients of 0.8e0.9 and
energy correction factors of 1.06e1.10 for MERRA and CFSR [14],
and a correlation coefficient of 0.73 for hourly MERRA data [15].
However, these validations do not capture errors and uncertainties
introduced when wind speeds are extrapolated from 10-m to
typical wind turbine hub heights using assumed vertical wind
speed profiles. A few authors validate reanalysis data using wind
speeds measured at heights closer to wind turbine hub height
(50e100 m). A comparison of daily average wind speeds from
several reanalysis models to tall tower data calculates average R2

values of 0.73 for CFSR and 0.67 for MERRA [16]. A thorough
analysis with offshore wind speed measurements in the UK finds
MERRA under-predicts hourly wind speeds by an average of 7% and
over-predicts the COV of annual wind speeds by an average of 17%.
That study also calculates R2 values of 64e93% for hourly speeds,
80e97% for daily averages, and 90e99% for monthly averages [17].
Henson finds correlation coefficients of 75e87% for hourly MERRA
wind speeds with data from on-shore sites in Massachusetts [9].

In this work we present a model that corrects biases and
quantifies the uncertainty in wind energy calculated from rean-
alysis data. Whereas previous studies estimate uncertainty for in-
dividual sites assuming a separate model for each site, the model
we present quantifies the uncertainty attributable to between-site
differences as well as within-site variability. We apply this model to
generate 32 years of quarterly energy generation for individual
wind plants, which we analyze to estimate inter-annual variability
of wind energy generation and quarterly variability in cash flow to
equity holders in a wind plant. We focus on quarterly and annual
variations in wind energy because variations on those scales are
important to financiers and because the uncertainties in reanalysis-
predictions are smaller than at shorter time scales.

2. Methods

We estimate the quarterly energy generated by each of 1002
wind plants in the U.S. Great Plains for the period 1979e2010 using
reanalysis wind speed data. We calculate the 80-m height hourly
wind speed at each wind plant site by extrapolating data from the
CFS reanalysis [18]. We then aggregate the energy for each site by
quarter and apply a model we develop to correct for biases and
quantify uncertainty in the CFS data. Finally, we simulate 103

probable realizations of quarterly energy generation at each site.

2.1. Wind plant locations

We simulate the wind power at the locations of all wind plants
from the EasternWind Integration and Transmission Study (EWITS)
[19] that are in the U.S. Great Plains (north and west of the Mis-
sissippi and Ohio rivers). We combine the few wind plants that are
less than 5 km apart, which leaves 1002 wind plants. We consider
only sites in Great Plains for four reasons. First, most wind power
development in the U.S. is taking place in the Great Plains. Second,
the terrain is generally flat, so we expect the reanalysis-predicted
wind speeds to be more accurate. Third, the area has a good
coverage of historical record of meteorological observations, which
are assimilated into the reanalysis model. Finally, good empirical
validation datawere available for the Great Plains in the formof tall-
tower wind speed data not assimilated into the reanalysis model.

The empirical data consists of several years of hourly wind
speedmeasurements from tall towers at 78 sites in the Great Plains,
measured at heights of 50e120 m. At sites with anemometers at
multiple heights, we selected the one closest to 80 m. A table
listing the locations, heights, date ranges, and meanwind speeds of
the empirical data sets is given in the Supporting
Information([38e41]). The sites are divided randomly into two
equally-sized subsets: a “training” set used to fit the equations in
(2) and a “validation” set used to test the fits. These data were
collected by economic development agencies in various states and
then checked for quality control and compiled into a single data-
base by the University of North Dakota Energy & Environmental
Research Center [20]. We have tried to ensure uniform land cover
and geographical properties for all sites by inspecting satellite
photographs and excluding sites with trees, structures, or other
obstructions within approximately 1 km.
2.2. Extrapolating hub-height wind speed from CFSR data

We estimate hourly wind speed at 80-m height u(z¼ 80) at each
location using 1e6 h forecast data from the CFSR [18] and the
following formula for a logarithmic vertical wind profile given by
Panofsky [21]:

u zð Þ ¼ u*=k log z=z0ð Þ �J z=Lð Þð Þ (1)

where:

u* ¼ friction velocity [m/s]
k ¼ 0.4 (von K�arm�an constant)
z ¼ hub height [m]
z0 ¼ surface roughness length [m]
J(z/L) ¼ correction for atmospheric stability, a function of the
stability measure z/L
L ¼ Obukhov length [m]

The friction velocity and surface roughness values are taken
from the CFS reanalysis data. The surface roughness values vary
spatially, depending on land cover, and temporally, depending on
season. The Obukhov length is calculated by an expression given in
the Supporting Information. The correction for atmospheric sta-
bility J is given in (2) for unstable (z/L < 0), neutral (0 � z/L < 0.5),
and stable (z/L � 0.5) atmospheric conditions:

J z=Lð Þ¼
p1 z=Lð Þþp2ð Þ

.
z=Lð Þ2þq1 z=Lð Þþq2

� �

�5 z=Lð Þ
�3:76 z=Lð Þ0:45

8><
>:

z=L<0
0� z=Lð Þ<0:5
0:5� z=Lð Þ

(2)

where p1 ¼ �2.0, p2 ¼ �0.36, q1 ¼ �0.26, and q2 ¼ 2.4. The ex-
pressions we present in (2) for stable and unstable conditions are
new in this work because we find the expressions typically given in
the literature [22e24] are a poor fit for the CFS reanalysis data.

We determined these novel equations for J in stable and un-
stable conditions by substituting historical wind speeds from the
empirical data described in Section 2.1 for u(z), solving (1) for J,
and then fitting empirical curves to J as a function of z/L using
robust (least absolute residuals) regression. This robust method is
less sensitive to outlier data than are other forms of regression. A
more detailed explanation of the fitting of these equations is given
in the Supporting Information. The coefficients of these equations
are fitted to data from many sites pooled together in order to
represent an average site. However, the fitted equations over-
compensate for atmospheric stability conditions at some sites
and under-compensate at others. We were not able to model this
between-site variation as a function of site characteristics, but we
attempt to quantify the uncertainty introduced by between-site
variation in (4).
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When fitting (2), we exclude the small number of data points
from hours with z/L > 10 (2% of data) or z/L < �10 (4% of data) from
the curve fitting because variance of the residuals grows rapidly for
jz/Lj > 10.
2.3. Correcting biases and quantifying uncertainty in quarterly
energy generation

The hourly hub-height wind speeds extrapolated from rean-
alysis data using (1) have biases and uncertainties from the
extrapolation procedure and from the reanalysis model. We
develop a correction and uncertaintymodel to correct for the biases
(a procedure known as Model Output Statistics [25]) and quantify
the uncertainties. Our procedure is similar to the linear regression
method described by Brower for determining the relationship be-
tween wind speeds at different locations [1].

We develop this correction and uncertainty model by
comparing the wind power calculated from reanalysis datawith (1)
to wind power calculated from historical data. First, we interpolate
the raw data from the reanalysis model to the locations of the sites
in the “validation” subset of the empirical data described in Section
2.1. We use that interpolated raw reanalysis data as inputs to (1) to
calculate hub-height wind speeds. Finally, we convert the rean-
alysis and empirical wind speeds to wind power using the power
curve for a generic 2-MW wind turbine (shown in the Supporting
Information) [19].

The correction and uncertainty model given in (3) is a hierar-
chical random-effects model [26] that estimates “actual” quarterly
energy Ei,j for site i in quarter j as a function of reanalysis energy Ri,j
for the corresponding site and quarter. The slope b is fixed, the
offset ai for site i is drawn from a normal distribution with mean
0 and standard deviation sa (4), and the error term ε for each
measurement is drawn from a normal distributionwithmean 0 and
standard deviation sε (5).

Ei;j ¼ ai þ bRi;jþεi;j (3)

ai � Nð0;saÞ (4)

εi;j � N 0;s
ε

ð Þ (5)

We fit the model to the available data using Markov Chain
Monte Carlo (MCMC) methods, as implemented in OpenBUGS
version 3.2.3 [27]. Fitting the model parameters using MCMC
methods yields distributions of probable values for each parameter
(b, sa, sε), rather than point estimates; summary statistics for the
distributions of values of b, sa, sε are given in Table 1. Fig.1 plots the
data to which the model is fitted, overlaid with the model using the
mean parameter values in Table 1. The inset shows the model for a
single site (thin red line) with 1-standard-deviation error bounds
(dashed lines).

We apply this model to quarterly wind generation from rean-
alysis data by first randomly drawing values of the parameters b, sa,
and sε to simulate 103 probable realizations of quarterly energy for
each site. Those values of sa, and sε drawn for each realization are
Table 1
Summary statistics of hierarchical model of quarterly energy for a 2-MW turbine
described in (3)e(5). Units are MWh/quarter for a 2-MW turbine.

Mean Median Std. dev. Pearson corr. Coeffs. For b, sa, sε

b 0.80 0.80 0.026
2
4

1
�0:56 1
0:17 �0:094 1

3
5sa 435 429 63

sε 175 175 5.4
then used as the parameters for normal distributions from which
the offset for each site ai and the measurement error for each
quarterly energy value εi,j are drawn. We subsequently refer to the
resulting values of quarterly energy as “corrected” reanalysis data.

The estimated model with parameters given in Table 1 indicate
that the reanalysis wind speed over-predicts quarterly energy
production for turbines with quarterly generation less than 37%
capacity factor (~1600 MWh per quarter) and under-predicts for
turbines with higher capacity factors, as shown in Fig. 1. The fitted
value of the within-site variability parameter sε ¼ 175 MWh/
quarter and between-site variability parameter sa ¼ 435 MWh/
quarter (for a turbine that generates an average of 1950 MWh/
quarter) show that between-site variability dominates the uncer-
tainty in energy generation. These results suggest that additional
research is needed to determine the source of the between-site
variability and find additional inputs to the model to better
explain that variability.

To the best of our knowledge, this is first model of the un-
certainties and biases in reanalysis-predictedwind speed or energy.
Previous work summarized in Section 1 calculated the R2 values (or
the related correlation coefficients) for the relationship between
reanalysis and actual wind speeds but not applied those findings to
estimating the uncertainty bounds on the reanalysis wind speeds.
For comparison with previous work, we fit linear functions (unre-
lated to the model described in (3)) to quarterly wind energy for
each of the 38 sites in the validation subset of the empirical data
and find R2 values in the range �0.36e0.997, with a mean of 0.77.

3. Results

We use the realizations of corrected wind energy developed in
Section 2.3 to estimate several measures of long-termwind energy
variability.

3.1. Variability of single-site annual energy generation

The energy generated by a single wind plant varies from year to
year due to weather and climate. We quantify that variability for
each EWITS site using the corrected reanalysis data described in
Section 2.3. The coefficient of variation (COV) of annual energy
generation is the mean annual energy generation divided by the
standard deviation; for individual sites median COV values range
from 5.4% to 12%, with a mean value of 7.7%; the median COV values
are plotted in Fig. 2. We refer to “median COV” becausewe calculate
103 realizations of COV for each site from the uncertain reanalysis
data described in Section 2.3. There is a 90% probability that the
COV for a given site is within 4.2% points of the site median.

These values are similar to previous estimates of COV of annual
energy: Milligan calculates 10% from historical weather data at one
low-wind-speed site in North Dakota [28], Baker calculates 12e13%
from historical weather data for 3 sites in the Pacific Northwest
[29], and Wan calculates 8%e13% from historical wind power pro-
duction data at 4 sites in the Great Plains [30]. The COV for indi-
vidual sites shows a geographic trend that is the inverse of the
geographic trend in wind resource [31,32]: sites with better wind
resource (average annual wind speed) have lower COV (plotted in
the Supporting Information).

This long-term variability of annual energy at an individual site
is important towind plant developers because it sets an upper limit
on the allowable debt load for the wind plant. Most plants sell their
energy on a fixed-price contract, so revenue variability is propor-
tional to variability in energy generation. The expected revenue in a
bad year determines the amount of debt financing a wind plant can
obtain. Typically, the debt payments are set to some multiple of the
plant's revenue in the 1st percentile (“P99”) or 10th percentile



Fig. 1. Comparison of measured energy generation to reanalysis-predicted generation. Each point represents the quarterly generation for a 2-MW turbine in a given site; for
comparison, a 2-MW turbine with a 35% capacity factor generates 1500 MWh per quarter. The red line shows the nominal values of the model described by equation (3) and
parameters in Table 1. A grey line with a slope of 1 is plotted for comparison. The inset compares data from a single site to its corresponding model: the solid black line shows the
site-specific model, which is offset from the nominal model by ai, and the dashed lines show the error term ε. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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(“P90”) year [33]. If two plants have identical mean generation but
different year-to-year variability in generation, the plant with less
variability will be able to take a larger amount of debt and have a
higher debt-to-equity ratio. In practice, uncertainties about future
Fig. 2. Median Coefficient of Variation (COV) of annual energy generation for EWITS wind pla
the COV for a given site is within 4.2% points of the plotted median.
revenue will be larger than the results we give here because wind
plant developers estimate the distribution of energy generation
from much shorter periods of data: 1e2 years, compared to the 32
years we use in our analysis.
nts in the U.S. Great Plains and the Eastern Interconnect. There is a 90% probability that
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3.2. Variability of aggregate annual energy generation

The inter-annual variability of wind generated in large regions is
of interest to power system planners. We calculate the aggregate
annual energy generation for all the EWITS sites, using the cor-
rected reanalysis data weighted by capacity. The mean COV of en-
ergy for the aggregated sites, 3.0%, is much smaller than the COVs
calculated for individual sites, which illustrates the smoothing ef-
fects of aggregating many wind plants. Fig. 3 plots a time series of
aggregate annual energy (with 1 standard deviation error bars) and
Table 2 presents summary statistics.

We also present results from previous studies for comparison
with our results. Giebel used reanalysis data to calculate a COV of
6.4% for aggregate annual energy for 83 sites in northern Europe;
see Table 2 [10]. Katzenstein used historical data to calculate a COV
of 5.4% for 16 sites in the Great Plains [34]; see Table 2 and the red
line in Fig. 3. The time series of our results in Fig. 3 is qualitatively
similar to Katzenstein's, but our results show less variability (3.0%
compared to Katzenstein's 5.4%). To test whether the lower vari-
ability of our results is caused by the much larger number of sites
we aggregate (1002 compared to 16) or the turbine power curvewe
use, we use our corrected reanalysis data to calculate the aggregate
energy for the 16 sites Katzenstein analyzes with the same power
curve. We calculate a COV of 2.9% for those sites. The summary
statistics for our analysis of those 16 sites is labeled “This work
(compare to Katzenstein)” in Table 2 and a plot of the time series is
given in the Supporting Information. For comparison, we also
include statistics for aggregate U.S. hydroelectric generation in the
last row of Table 2 [35]. These statistics show that aggregate annual
hydroelectric is much more variable than aggregate annual wind
generation.

The year-to-year variability of aggregate generation is important
for the financing of wind plants because these results show that
aggregating many wind plants distributed across a large area
significantly reduces the variability of energy generation and cor-
responding revenue. Grid operators already manage the inter-
annual variability of hydroelectric generation, which has a COV of
12%, approximately three times as large as the variability we esti-
mate for wind generation. Long-term planning for generation ca-
pacity may benefit from understanding the size of this inter-annual
variability. However, grid operators typically estimate the contri-
bution of wind power to peak generation capacity based on the
correlation between hourly wind power and electricity demand.
Fig. 3. Annual wind energy estimated for the aggregate of all EWITS wind plants in the U.S. G
aggregate annual wind energy for 16 sites in the Great Plains from Katzenstein [34]. (For inte
web version of this article.)
3.3. Variability in quarterly cash flow to equity investors

The variability of wind generation affects not only debt
financing for a wind plant, as we describe in Section 3.1, but it also
equity financing. Variations in cash flow to equity investors are
significantly larger than variations in wind generation because the
equity investments are leveraged by debt financing. We use the
corrected reanalysis data to estimate the COV of quarterly cash flow
to an equity investor for single wind plants or portfolios of two
wind plants selected to reduce variability.

We create a simple financial model of a wind plant based on
typical financing terms in the U.S. in 2013 [36]. The installed capital
cost of a wind plant is $2 � 106/MW, a portion of which is financed
with debt at 6% interest for 15 years. The debt load is determined as
1.2 times the 10-year average annual 10th percentile revenue (P90),
which is calculated from the reanalysis data described in Section
2.3 with a fixed energy price of $25/MWh, operating cost of $24/
MWh, and federal production tax credit of $23/MWh. This yields
debt financing of approximately 35% of the capital cost, which is
significantly lower than the historical averages for wind plants
because the capital cost in 2013 was higher than the historical
average and the energy price was significantly lower.

Given those financing terms, we calculate the COV of quarterly
cash flow for individual wind plants and pairs of wind plants and
plot the results in Fig. 4. The median COV for individual sites is 29%
with an inter-quartile range from 23 to 39%. Fig. 4 also plots the COV
values for various portfolios composed of two wind plants. This
shows that aggregating two plants reduces variability of quarterly
cash flow, similar to the effects of aggregating many plants we
discuss in the previous section. The median COV of randomly-
chosen pairs of sites is 25%, a decrease of 4% points from the COV
for individual sites. The variability can be reduced further by
carefully selecting pairs of sites. The median COV for optimally-
chosen pairs (chosen to minimize average correlation of quarterly
energy generation) is 20%. However, we find it is possible to achieve
COV values nearly as low by selecting pairs of sites from the regions
shown in Fig. 5. The median COV values for pairs of sites selected
from regions A, B, and C are 18e21%. The Supporting Information
gives additional details on how the regions were determined.

To test how much of the variability in our results is random
rather than seasonal, we subtract the seasonal means from the
quarterly cash flow and calculate a median COV of 22% for the same
individual sites (a boxplot of these results is given in the Supporting
reat Plains (blue) with uncertainty bars showing 1s confidence intervals. Red line plots
rpretation of the references to colour in this figure legend, the reader is referred to the



Table 2
Summary of annual variability of aggregate wind power from this work and two previous studies. Results from this work give ±1s confidence intervals in parentheses. The last
row (labeled “EIA 2012”) summarizes annual aggregate hydroelectric generation in the U.S. for comparison.

Data source Sites COV Max year Min year Max yeareyear change

This work Reanalysis 1002 3.0% (2.9e3.1) þ7.4% (3.9e11) �7.9% (4.8e11) 10.6% (10.2e11.1)
This work (compare to Katzenstein) Reanalysis 16 2.9% (2.6e3.1) þ6.3% (�1.3 þ 13.9) �7.9% (0e13.7) 9.5% (7.9e11.1)
Katzenstein 2010 Historical 16 5.4% þ15% �9.6% 22%
Giebel 2000 Reanalysis 83 6.4% þ13% �12% 18%
EIA 2012 Historical (Hydro) 12% þ26% ¡23% 21%

Fig. 4. Coefficient of Variation (COV) of quarterly cash flow to equity investors for individual sites and sites paired according to various criteria. The red lines denote the median,
boxes span the 25th and 75th percentile values, the whiskers extend to 1.5 times the inter-quartile range.

S. Rose, J. Apt / Renewable Energy 83 (2015) 963e969968
Information). This shows that most of the variability is random,
rather than seasonal. For comparison, Dunlop estimates a COV of
93% for an individual plant, which is significantly higher than the
COV values we calculate [37].
Fig. 5. Regions that have high correlations in quarterly wind energy generation. The
correlations between regions are low.
4. Discussion

In this work we develop a model to correct for biases and
quantify uncertainties in wind energy calculated from Climate
Forecast System Reanalysis (CFSR) data. This model is the first
application of model output statistics to reanalysis wind data and
the first to systematically quantify the uncertainties of the rean-
alysis data across many sites. We find the reanalysis data has a
positive bias: measured quarterly energy is 80% of the predicted
value from CFSR data, plus a constant offset, for matching locations
and time periods. More importantly, we find energy predicted from
CFSR data has significant uncertainties, dominated by between-site
variability.

In spite of the between-site variability in the reanalysis data, we
find robust results for measures based on wind energy aggregated
over large areas. We estimate the COV of aggregate wind energy
from 1002 EWITS wind sites in the Great Plains to be 3.0% ± 0.1%.
This inter-annual variability is much smaller than the variability at
individual sites (5.4%e12% ± 4.2%), which demonstrates the
smoothing effect of aggregating wind plants spread across a large
area. We also show robust reductions in the variability of quarterly
cash flow to equity investors when pairs of wind plants from
certain regions are combined into portfolios.

The significant between-site variability (sa ¼ 376 MWh/quarter
for a 2-MW turbine) suggests two possible sources of error. First,
the reanalysis data poorly models terrain features because of the
low resolution of the reanalysis model relative to the size of fea-
tures that affect wind power. We compared the reanalysis data
from empirical data selected from only flat regions, but it is possible
that we did not detect subtle terrain features (e.g. ridges, upwind
vegetation) that affect wind energy production. In our future
research we will validate these CFSR data in complex terrain,
similar to Henson et al. [9], and at offshore sites similar to The
Crown Estate [17]. Second, themethodwe use to extrapolate hourly
wind speed to hub height in (2) may introduce uncertainties. Our
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future work will test whether uncertainties in the uncertainties in
the Obukhov length calculated from reanalysis data introduce un-
certainties in the extrapolated wind speed. Our ultimate goal is to
reduce the uncertainties for hub-height wind speeds so that
reanalysis data can accurately model wind power from short time
periods (hours) and small areas. This would allow reanalysis data to
be used to estimate measures such as the capacity value of wind
power, which depends on the coincidence between wind genera-
tion and demand for electricity.

To summarize, this work demonstrates a model that corrects
biases in the CFSR data and quantifies its uncertainties. We find that
CSFR data over-predicts wind plant generation output for wind
plants with capacity factors greater than 37% and under-predicts
the others and that year-to-year variability of Great Plains wind is
likely to be less than half that of aggregate U.S. hydropower.
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