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[1] Many studies have attempted to estimate the equilibrium climate sensitivity (CS) to
the doubling of CO, concentrations. One common methodology is to compare versions
of Earth models of intermediate complexity (EMICs) to spatially and/or temporally
averaged historical observations. Despite the persistent efforts, CS remains uncertain. It
is, thus far, unclear what is driving this uncertainty. Moreover, the effects of the internal
climate variability on the CS estimates obtained using this method have not received
thorough attention in the literature. Using a statistical approximator (“emulator”) of an
EMIC, we show in an observation system simulation study that unresolved internal
climate variability appears to be a key driver of CS uncertainty (as measured by the 68%
credible interval). We first simulate many realizations of pseudo-observations from an
emulator at a “true” prescribed CS, and then reestimate the CS using the
pseudo-observations and an inverse parameter estimation method. We demonstrate that a
single realization of the internal variability can result in a sizable discrepancy between the
best CS estimate and the truth. Specifically, the average discrepancy is 0.84°C, with the
feasible range up to several °C. The results open the possibility that recent climate
sensitivity estimates from global observations and EMICs are systematically considerably
lower or higher than the truth, since they are typically based on the same realization of
climate variability. This possibility should be investigated in future work. We also find
that estimation uncertainties increase at higher climate sensitivities, suggesting that a high

CS might be difficult to detect.
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1. Introduction

[2] Future climate projections strongly depend on cli-
mate sensitivity (CS) [Matthews and Caldeira, 2007; Knutti
and Hegerl, 2008]. CS is the equilibrium global mean
near-surface temperature change for a doubling of atmo-
spheric CO, concentrations [Andronova et al., 2007; Knutti
and Hegerl, 2008]. Many recent studies attempted to esti-
mate climate sensitivity. A common methodology is to use
Earth models of intermediate complexity (EMICs) and sim-
ple models in conjunction with spatially and/or temporally
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averaged historical observations towards this purpose
[Forest et al., 2002; Gregory et al., 2002; Knutti et al.,
2003; Forest et al., 2006; Tomassini et al., 2007; Drignei
et al., 2008; Hegerl et al., 2007, and others]. Despite these
efforts, CS has remained consistently uncertain [Edwards
et al., 2007; Hegerl et al., 2007; Knutti and Hegerl, 2008].

[3] Key sources of this uncertainty include the follow-
ing: (i) climate model error, (ii) unresolved internal climate
variability, and (iii) observational error. We refer to the sum
of these processes as “unresolved climate noise”. Quantify-
ing the relative contribution of these sources of uncertainty
is of considerable policy relevance. Here we focus on the
role of the unresolved internal climate variability. The unre-
solved internal climate variability is the part of the observed
internal climate variability record that a climate model can
not reproduce.

[4] We analyze the role of the unresolved climate vari-
ability using observation system simulation experiments
(OSSEs). OSSEs are a common tool in physical and envi-
ronmental sciences to evaluate observation system designs
[e.g., Piani et al., 2005; Knutti et al., 2006, Urban and
Keller,2009; Huang et al., 2010a, 2010b; Serra et al., 2011;
Zakamska et al., 2011]. In OSSEs, synthetic (or “pseudo-")
observations are usually first generated from a model with
known “true” parameter setting by adding noise representing
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observational error. The parameters are then reestimated
using the pseudo-observations. This simple set-up allows for
careful testing of the methods and for quantifying different
drivers of uncertainties.

[s] Our starting point is an ensemble of Earth Sys-
tem model runs spanning the last two centuries where
climate sensitivity is systematically varied. The ensem-
ble also accounts for the uncertainty in ocean mixing and
radiative effects of anthropogenic sulfates [Olson et al.,
2012]. We use a previously developed statistical approxi-
mator (“emulator”) of this model to estimate model output
at the parameter values where the model was not evalu-
ated. In a suite of OSSEs, we construct pseudo-observations
of surface temperature (T) and upper ocean heat content
(0-700 m, OHC) by contaminating the emulator output at a
set “true” CS with unresolved climate noise. We then rees-
timate CS using the pseudo-observations, and an inverse
parameter estimation method. We use this approach to
address three main questions: (i) How well can we constrain
CS using observations of temperature and upper ocean heat
content? (ii) Do the estimation uncertainties depend on the
input CS? and (iii) What is the contribution of the unre-
solved internal climate variability to the CS uncertainty? We
give further details on the Earth System model, its emulator,
the parameter estimation methodology, and the experimental
design in the following sections.

2. Methods

2.1. Earth System Model Simulations

[6(] We use output from the University of Victoria
Earth System model (UVic ESCM) version 2.8 [Weaver
et al., 2001], an Earth system model of intermediate
complexity (EMIC). The model’s atmosphere is a one-
layer energy moisture balance model, with prescribed
winds from the NCEP/NCAR climatology [Kalnay et al.,
1996]. The ocean component is a general circulation
model MOM?2 with 19 vertical levels [Pacanowski, 1995].
The horizontal resolution of both components is 1.8° [lat] x
3.6° [lon]. The model also includes thermodynamic sea ice,
dynamic terrestrial vegetation, and oceanic biogeochemistry.
UVic ESCM has little or no internal climate variability in
near-surface atmospheric, and upper ocean temperatures (the
variables used in this study) besides the seasonal cycle.
EMICs often represent many physical processes in a sim-
plified way, but they are less computationally expensive
compared to general circulation models (GCMs) and have
been frequently employed to estimate climate parameters
[e.g., Forest et al., 2002; Knutti et al., 2003; Forest et al.,
2006; Tomassini et al., 2007; Sanso and Forest, 2009; Olson
et al., 2012]. Our modified version of the model includes an
updated solar radiative forcing, and implements additional
greenhouse gas, volcanic, and anthropogenic sulfate aerosol
forcings [Olson et al., 2012].

[7] Specifically, we use an ensemble of 250 historical
UVic ESCM runs spanning the years 1800-2010 [Olson
et al., 2012]. The ensemble samples model parameters CS,
background vertical ocean diffusivity (Kp,) and a scaling
factor for albedos due anthropogenic sulfate aerosols (4;.).
CS is varied through an additional parameter /~ that changes
longwave feedbacks. Specifically, it perturbs modeled out-
going longwave radiation as a function of local temperature

Table 1. Ranges for Model and Statistical Parameters®

Lower Upper
Parameter Units Bound Bound
Kpg cm? s 0.1 0.5
CS °C per CO, doubling 1.1 11.2
Ase unitless 0 3
or °C 0.01 inf
Oonc 1x1027 0.01 inf
or unitless 0.01 0.999
POHC unitless 0.01 0.999
br °C -0.51 0.50

*Subscripts T'and OHC refer to surface air temperature and upper ocean
heat content respectively.

change from year 1800. We diagnose the mapping between

/" and climate sensitivity using a small ensemble of long

CO, doubling simulations with varying f* [Olson et al.,
2012]. We provide the ranges for the model parameters of
the ensemble in Table 1.

2.2. Gaussian Process Emulator

[8] Our methodology requires orders of magnitude more
UVic ESCM runs than it is feasible to carry out with a typical
computational environment (see section 2.3). We overcome
this hurdle by using the UVic ESCM emulator detailed in
Olson et al. [2012]. Emulators are fast statistical approxima-
tors to climate models that are increasingly used in climate
science [Drignei et al., 2008; Holden et al., 2010; Edwards
et al., 2011; Bhat et al., 2012; Olson et al., 2012]. Emula-
tors are very fast, which enables better sampling of model
parameter space. Our emulator relies on model output at the
250 parameter settings of the ensemble and interpolates the
model response to any desired parameter setting. The emula-
tor prediction at each parameter setting is a random variable
with the expected value (known as “posterior mean”) and
the associated predictive uncertainty. We refer to the pos-
terior mean as “emulator output” throughout this paper.
Specifically, the emulator estimates global average annual
surface temperature anomalies 7" (years 1850-2006) and
upper ocean heat content anomalies OHC (0-700 m, years
1950-2003). These times reflect the coverage of pseudo-
observations (section 2.3) and are consistent with the span
of observations from Brohan et al. [2006] and Domingues
et al. [2008]. The temperature anomaly is calculated with
respect to years 1850—1899, while the OHC anomaly—to
years 1950-2003.

[9] The emulator works in rescaled model parameter
coordinates such that each parameter ranges from zero to
unity. The emulator approximates the climate model output
as a sum of a quadratic polynomial in the rescaled param-
eters, and a zero-mean Gaussian process with an isotropic
covariance function (i.e., the smoothness of the Gaussian
Process is the same in all rescaled parameter directions).
We only use the emulator to interpolate the model outputs
between the parameter settings. There is no extrapolation
beyond the range of the ensemble. The emulator provides a
reasonable approximation to UVic ESCM over the param-
eter ranges used [Olson et al., 2012]. An example of emu-
lator output for the final year for each diagnostic is given
in Appendix A.
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Table 2. Summary of the Design and the Results of the Observation System Simulation Experiments?

Experiment Details

Properties of CS Estimates (°C)

Assumed Mean
or O0oHC “true” Average Deviation Std. of Mean 68% CI
Experiment Priors (°0) (x10%2 J) or OOHC CS (°0) Mode of Modes Modes of pdfs
“Standard” Unif. 0.10 2.6 0.58 0.079 3.1 3.3 1.1 1.6 35
“Nat. Var.” Unif. 0.12 0.51 0.45 0.9 3.1 32 0.84 1.0 3.0
“Higher CS” Unif. 0.10 2.6 0.58 0.079 4.8 5.8 2.0 2.6 4.5
“Inf. Priors” Inf. 0.10 2.6 0.58 0.079 3.1° 2.9 0.36 0.41 1.5

#“Unif.” refers to uniform priors for climate parameters, and “Inf.” refers to informative priors for Kj, and CS following the default case of Olson et al.
[2012]. The mean 68% CI refers to the mean 68% posterior credible interval of CS estimates. The interval is calculated as the range between the 16th and

the 84th percentiles of the CS chains.

"While “true” input CS is 3.1°C, the mean of the non-uniform prior is 3.25°C, and the mode is 2.96°C.

2.3. Observation System Simulation Experiments

[10] We conduct several OSSE to address the three ques-
tions previously outlined in the Introduction. The OSSEs
involve two stages:

[11] 1. Generation of pseudo-observations
emulator given assumed “true” CS.

[12] 2. Reestimating CS given these pseudo-observations,
the emulator, and an inverse parameter estimation method.

[13] In the first stage, we answer the question: Given
a “true” CS, what time series of temperature and ocean
heat content can we theoretically observe? To this end, we
construct pseudo-observations by superimposing unresolved
climate noise on the emulator output at a pre-defined “true”
climate parameter setting. The unresolved noise models the
sum of the processes that result in the discrepancy between
the observations and the emulator. These processes include
emulator predictive error, model error, observational error,
and unresolved internal climate variability. Mathematically,
the noise # is defined as follows:

from the

Mg = Vik — ft,k(g): )]

where y refer to the observations, fis the emulator output,
6 is the vector of model parameters (K, CS, 4,.), t is the
time index, and £ is the diagnostic index (i.e., k = 1 for T,
and k = 2 for OHC).

[14] We approximate the unresolved climate noise by an
AR(1) process. Exploratory data analysis shows that this
is a reasonable assumption for all our OSSEs (results not
shown). Specifically,

Nk = PRk T Wik, )

where p is first-order autocorrelation and w is an indepen-
dently and identically distributed Gaussian noise with the
innovation standard deviation o;. This AR(1) process is
completely specified by the o; and p; parameters.

[15] The second stage of the OSSE addresses the follow-
ing question: What CS pdfs can we obtain given the “true”
CS value and the different realizations of the unresolved
climate noise? Following Olson et al. [2012], we use the
pseudo-observations y to reestimate CS using the following
statistical model:

Yk = f:,k + by + g, 3)

where by is an additional time-independent bias. We set the
bias term for OHC to 0, for consistency with Olson et al.
[2012]. Associated with each parameter value @ = (K, CS,
Ase, 07, Oonc, Pr> Pouc, br) there is a likelihood func-
tion which describes the probability of pseudo-observations
given this parameter value (detailed in Appendix B). Using
Bayes Theorem, we multiply the likelihood function by
the prior probability for the parameters to obtain the pos-
terior probability for each parameter setting. We estimate
the joint posterior pdf for ® using Markov chain Monte
Carlo (MCMC). The MCMC algorithm [Metropolis et al.,
1953; Hastings, 1970] is a standard computational approach
for estimating multivariate posterior pdfs. We implement
the method following Olson et al. [2012]. Specifically, our
MCMC parameter chains are 300,000 members long for
each unresolved noise realization.

[16] Our methodology is different from the work of Sanso
and Forest [2009], which uses many realizations of the
stochastic emulator predictions, in that we use the posterior
mean function, or expected emulator prediction. The pos-
terior mean function approach has been previously adopted
by Drignei et al. [2008]; Higdon et al. [2008]; Bhat et al.
[2012], and Olson et al. [2012].

[17] For each experiment, we repeat the procedure of gen-
erating pseudo-observations and estimating CS 60 times,
each time using a different random realization of the unre-
solved climate noise process. We test two out of 60 realiza-
tions for convergence by running the estimation twice with
different initial values for the final MCMC chain. We have
not detected any convergence problems with our algorithm.

[18] The OSSEs share the same general set-up, with rela-
tively minor differences. Specifically, the experiments differ
in assumed “true” parameter values, in the priors, and in the
assumptions about the unresolved noise process (Table 2).

[19] In the first experiment, called “Standard”, we address
how well can the observations constrain CS assuming real-
istic knowledge of climate uncertainties. Here we use mean
estimates from the base case of Olson et al. [2012] as “true”
climate parameters. These values are Ky, = 0.19 cm? s7',
CS = 3.1°C and 4,. = 1.1. For unresolved climate noise
we adopt the modes from the base case of Olson et al
[2012]: o7 = 0.10°C, oouc = 2.6 x 10?2 J, p; = 0.58, and
pouc = 0.079 (UVic ESCM Residuals in Figures1 and 2).
For simplicity, we do not use bias terms when generat-
ing pseudo-observations, since the 95% posterior credible
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Figure 1. Statistical properties of surface atmospheric

temperature anomaly (7) time series - AR(l) innova-
tion standard deviation o7, and first order autocorrelation
pr: GCMs (BCCR-BCM2.0, GFDL-CM2.1 and UKMO-
HadCM3, red circles), mean across the three GCMs (red
triangle), residuals between the UVic ESCM and the obser-
vations from Brohan et al. [2006] (years 1850-2006, blue
triangle), and detrended observations from Brohan et al.
[2006] (years 1850-2006, green triangle). For the residuals,
we use the marginal mode for the base case of Olson et al.
[2012]. For the detrended observations, we first demean the
yearly observations, and then detrend them using a lowess
fit trend. Grey contours show the process standard deviation
0,1 (cf. Appendix B). We use yearly average time series for
the AR(1) inference.

intervals for these terms include zero [Olson et al., 2012].
We use uniform priors for all parameters (Table 1).

[20] In the experiment “Nat. Var.”, we address the follow-
ing question: How well could we theoretically estimate CS
if the model, emulator, and observational errors decreased
to zero? In this case, internal climate variability remains the
only component of unresolved climate noise. By the internal
climate variability, we mean the variations in the mean state
of the climate on all spatial and temporal scales beyond that
of individual weather events due to natural internal processes
within the climate system (as opposed to variations in natural
or anthropogenic external forcing) [Baede, 2007]. We also
assume, as an approximation, that we know perfectly the
statistical properties of this variability (e.g., errorless GCMs
that can correctly simulate the “true” variability). We discuss
the effect of this assumption later.

[21] Unfortunately, it is difficult to estimate the internal
climate variability from observations because of the con-
founding effects of observational errors, particularly in the
case of OHC. Thus, following Tomassini et al. [2007] and
Sanso and Forest [2009], we approximate the internal vari-
ability by using the GCM output. We fit an AR(1) process
to detrended near-surface global mean annual atmospheric
temperature and 0-700 m ocean heat content anomalies
from preindustrial control runs of three climate models:

BCCR-BCM2.0 [Ottera et al, 2009], GFDL-CM2.1
[Delworth et al., 2006; Gnanadesikan et al., 2006], and
UKMO-HadCM3 [Gordon et al., 2000; Pope et al., 2000;
Johns et al., 2003]. The output of these runs was obtained
from the World Climate Research Programme’s (WCRP’s)
Coupled Model Intercomparison Project phase 3 (CMIP3)
multi-model data set [Meehl et al., 2007]. Specifically,
we use run 1 for all three models. We discard the first
100 years for BCCR-BCM2.0 because of the drifts in
modeled climate. We first remove the mean and then detrend
the anomalies using robust locally weighted regression
[Cleveland, 1979] with the span f of 2/3. When calculating
OHC, we first obtain temperatures from potential temper-
atures and salinities using the UNESCO equation of state
[UNESCO, 1981] following Bryden [1973] and Fofonoff
[1977]. For this conversion, we find the ocean pressure field
from latitude and depth using simplified equations [Lovett,
1978]. For GFDL-CM2.1 we only use years 1-300, since it
is only for these years that the salinity fields are available.
The resulting AR(1) properties, averaged across the mod-
els, are as follows: o7 = 0.12°C, oouc = 0.51 x 102 ],
pr =0.45, and pouc = 0.9 (Table 2, Figures 1 and 2, red tri-
angles). As in previous work [e.g., Tomassini et al., 2007],
we neglect the cross-correlation between 7 and OHC. The
average correlation estimated from the three GCMs is 0.41,

o
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4 UVic ESCM Residuals
© |
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Figure 2. Statistical properties of ocean heat content
anomaly in the 0—700 m layer (OHC) - AR(1) innova-
tion standard deviation oonc, and first-order autocorrelation
ponc: GCMs (BCCR-BCM2.0, GFDL-CM2.1 and UKMO-
HadCM3, red circles), mean across the three GCMs (red
triangle), residuals between the UVic ESCM and the obser-
vations from Domingues et al. [2008] (years 1950-2003,
blue triangle), and detrended observations from Domingues
et al. [2008] (years 1950-2003, green triangle). For the
residuals, we use the marginal mode for the base case of
Olson et al. [2012]. For the detrended observations, we first
demean the yearly observations, and then detrend them using
a lowess fit trend. Grey contours show process standard
deviation o, onc (cf. Appendix B). We use yearly average
time series for the AR(1) inference.
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Figure 3. Posterior probability distributions (pdfs) for climate sensitivity from observation system sim-
ulation experiments: (top left) “Standard,” (top right) “Nat. Var.,” (bottom left) “Higher CS,” and (bottom
right) “Inf. Priors.” Each grey line corresponds to one realization of unresolved climate noise. “True”
input climate sensitivities are shown by vertical dotted lines. The dashed pdf denotes CS prior in the “Inf.
Priors” experiment. Filled (open) red circles denote the mean (median) estimated CS mode, and the red
lines extend one standard deviation around the mean mode. The limits of the y-axes are the same between

panels.

indicating that 17% of variability in temperature is explained
by the variability in ocean heat content, and vice versa. In
the estimation stage, we fix the statistical parameters of the
observation-emulator residuals at their “true” values. This
represents a case where one has a perfect knowledge of
internal climate variability. This is in contrast to “Standard”
experiment where the properties of the unresolved climate
noise are estimated jointly with climate parameters.

[22] The “Higher CS” experiment explores the effects of
different “true” parameter values on the estimation. It differs
from “Standard” by using a higher “true” input CS. Specifi-
cally, we adopt Kj, = 0.19 cm?s™!, CS = 4.8°C and 4,, = 1.3.
These values are selected to be consistent with the bivariate
joint pdfs presented in Olson et al. [2012].

[23] The “Inf. Priors” experiment examines the role of
priors. It uses informative priors for CS (Figure 3) and

K;, following the default case of Olson et al. [2012].
“Inf. Priors” has otherwise the same setup as “Standard”
(cf. Table 2).

3. Results and Discussion

[24] Our results suggest that the process driving unre-
solved internal climate variability is a key factor behind
the current uncertainty in climate sensitivity estimates.
Specifically, the average width of the estimated CS pdfs
(as measured by the 68% posterior credible intervals) in
the “Nat. Var.” case is only modestly lower compared to
the “Standard” case (Table 2, Figure 3). This suggests that
CS is likely to remain uncertain in the world of error-free
models and perfect observations, due to the confounding
effect of the unresolved internal climate variability. The
variability also appears to be a key factor in the second-
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Figure 4. Histograms of the modes of the estimated climate sensitivity probability density functions:
(top left) “Standard,” (top right) “Nat. Var,” (bottom left) “Higher CS,” and (bottom right) “Inf. Priors.”
“True” input climate sensitivities are shown by vertical red lines. Y-axes limits are the same between

panels.

order uncertainty in climate sensitivity (Figures 3 and 4).
This uncertainty represents the sensitivity of estimated CS
pdfs to different realizations of the unresolved climate noise,
and is measured by the mean deviation of estimated CS
modes. Specifically, while the mean deviation is 1.1°C in
the “Standard” experiment, it decreases to 0.84°C in the
“Nat. Var.” case (Table 2). Broadly consistent results for
internal climate variability (but with higher scatter of the
modes) are obtained if the AR(1) properties of the variability
are estimated (rather then held fixed at “true” values); and
when the bias term is removed during the estimation stage
(see Appendix C). Overall, our results suggest that internal
climate variability presents a substantial obstacle to estimat-
ing climate sensitivity. It is thus far an open question whether
this hurdle can be overcome with alternative approaches that
perform joint state and parameter estimation [e.g., Annan
et al., 2005; Evensen, 2009; Hill et al., 2012]. Of course,
the pivotal role of the internal climate variability should
not prevent us from investing in better future observational
systems. Webster et al. [2008] show, using a simplified unre-
solved climate noise representation, that future observations
are expected to further reduce the CS uncertainty.

[25] The CS estimation uncertainties increase at higher
CS. Specifically, both pdf width and scatter increase consid-
erably compared to the “Standard” case (Table 2, Figure 4).
This suggests that higher climate sensitivities can be difficult
to detect if a particular realization of climate noise biases
the result low. This is consistent with the analytical model
results of Hansen et al. [1985], which show that the depen-
dency of transient ocean warming on climate sensitivity
weakens at high CS. Thus, at high CS, a small uncer-
tainty in a single ocean surface warming observation implies
a larger uncertainty in climate sensitivity. Our numeri-
cal model shows similar response of atmospheric surface

warming to changing CS. Note that there are other compli-
cating factors influencing the CS uncertainty, such as the
aerosol effects specified by Aj..

[26] Switching from uniform to informative priors (the
“Inf. Priors” experiment) substantially reduces the CS uncer-
tainty (Table 2, Figures 3 and 4). Under the informative
priors, the mean estimated CS mode (2.9°C) is somewhat
lower than the “true” value of 3.1°C. This difference is sta-
tistically significant (¢ = 0.05). This might be in part due
to the biasing effect of the mode of the CS prior, which
is lower than the “true” value. Both of these effects (lower
uncertainty but potential biases under narrower priors within
the context of OSSEs) have been previously found and
discussed by Webster et al. [2008]. Thus, while using infor-
mative priors can be a promising approach, care should be
given to choosing an appropriate prior.

[27] In all experiments, higher estimated CS modes are
associated with higher 4;. modes. The Spearman’s rank cor-
relation coefficients between the two sets of modes are 0.84
for “Standard,” 0.88 for “Nat. Var.,” 0.77 for “Higher CS,”
and 0.75 for “Inf. Priors.”

[28] Finally, each realization of internal climate variabil-
ity can result in a considerable discrepancy between the
best CS estimate and the true value (“Nat. Var.” panels,
Figures 3 and 4). While average discrepancy due to the unre-
solved internal variability is 0.84°C (Table 2), one of the
“Nat. Var.” realizations leads to an estimate of 6.3°C which
is 3.2°C higher than the “true” value. Even larger outliers
are found in additional sensitivity experiments that differ in
statistical assumptions from the “Nat. Var.” For example,
in the experiment that does not use a bias term for tem-
perature (b7), one out of 60 variability realizations leads
to a CS mode of 10.8°C, which exceeds the “true” value
by 7.7°C (Appendix C). In general, the distribution of the
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discrepancy is positively skewed, with a longer upper tail
(Figure 4).

[29] Historical observational constraints on climate sen-
sitivity (e.g., global average upper ocean heat content and
surface temperature) are based on a single realization of
internal climate variability process. Not considering the
effects of the observational and model errors, this realiza-
tion alone can introduce a considerable discrepancy between
the best CS estimate and the true value. Given that sci-
entific models often share similar assumptions and might
not be independent (see Pennell and Reichler [2011] for
a discussion of similarities in GCMs), it is possible that
the bias due to the internal variability can be in the same
direction in studies using different models. As a result, cur-
rent EMIC-derived CS estimates from these data sets may
be systematically higher or lower than the true value. A
way forward might be to use independent constraints from
other time periods (e.g., Last Glacial Maximum, Holden
et al. [2010]; Schmittner et al. [2011]) or information
from a wider variety of spatially resolved data sets and
reanalyses [Forest et al., 2002, 2006; Piani et al., 2005;
Knutti et al., 2006].

4. Caveats

[30] Our analysis uses many assumptions that point to
several caveats and open research questions. The Earth
System model approximated by our emulator relies on a
number of simplifications (e.g., it does not explicitly include
clouds) and neglects some historic forcings (e.g., indirect
effects of anthropogenic sulfates; and tropospheric ozone
[Forster et al., 2007]). Also, we do not fully account for
past forcing uncertainties. In addition, we change climate
sensitivity using a very simplistic approach by varying long-
wave radiative feedbacks, while shortwave feedbacks are
also uncertain [Bony et al., 2006].

[31] The way we estimate internal climate variability
for use with the “Nat. Var.” experiments has limitations.
For example, our estimates of the variability rely on three
climate models. Using more models might provide a bet-
ter sample. In addition, there is a distinct possibility that
climate models considerably underestimate the observed
decadal OHC variability (e.g., Levitus et al. [2001], Hansen
et al. [2005]; but see AchutaRao et al. [2007] for an
alternative view). If true, we hypothesize that the CS
uncertainty in the “Nat. Var.” experiment would increase,
which would strengthen our conclusion that natural variabil-
ity is an important driver of CS uncertainty.

[32] In addition, the limitations of our statistical model
and OSSE set-up deserve mentioning. Specifically, our
statistical model does not include any cross-correlation
among the residuals for 7 and OHC, and relies on a simple
AR(1) structure. However, our exploratory data analysis and
the spectra of internal climate variability from the three
GCMs suggests that this structure is a reasonable approxi-
mation to the underlying statistical processes. Also, we use a
relatively small number of realizations in the OSSEs to keep
the computational burden manageable. Furthermore, we rely
on uniform priors in most experiments. We have chosen to
work with the relatively simple prior specification because
it still remains an open question to find more informative
priors that lead to good bias, and coverage properties. We

use a uniform prior for A, to reflect the current large range
of uncertainty about past aerosol forcings [Forster et al.,
2007]. Considering the impact of learning about 4. on the
CS uncertainty (by using a tighter prior for A,.) is the subject
of future research. Finally, we explore only a small subset
of uncertainty in unresolved climate noise, and in climate
model parameters.

5. Conclusions

[33] We use observation system simulation experiments
(OSSEs) to analyze the effects of unresolved internal climate
variability on the uncertainty in climate sensitivity. We
repeatedly simulate pseudo-observations from a statistical
emulator of an Earth System Model at a given climate sen-
sitivity, and then reestimate the sensitivity using a Bayesian
inversion method.

[34] Our results suggest that unresolved internal climate
variability (as approximated by the three general circula-
tion models we use) is an important driver of the first-order
(as measured by the 68% posterior credible internal) and the
second-order (as measured by standard deviation of the esti-
mated modes) uncertainty in climate sensitivity estimates.
A single realization of climate variability can introduce a
substantial discrepancy between a CS estimate and the true
value. These results open the possibility that, recent CS esti-
mates from intermediate complexity models using global
mean warming observations are systematically higher or
lower than the true CS, since they typically rely on the
same realization of the climate variability. For this method-
ology, the unresolved internal variability represents a critical
roadblock. Our research suggests that even if we at present
had structurally errorless models and perfect observations,
current estimation approaches would still result in consider-
able CS uncertainty. Our results should be further confirmed
with other climate models, and with an improved statistical
model of internal climate variability.

[35] Overall, the influence of internal climate variabil-
ity on CS estimates from these methods warrants thorough
investigation. Future work should examine the power of
learning about aerosol effects, and of combined state and
parameter estimation methods [e.g., Annan et al., 2005;
Evensen, 2009; Hill et al., 2012], to confront this challenge.

Appendix A: Emulator Output

[36] The emulator output for the final year of pseudo-
observations (2006 for 7, and 2003 for OHC) is shown in
Figure A1. Specifically, two model parameters are varied at a
time, while the third parameter is kept constant at the “true”
setting for the “Standard” experiment. The response of
temperature and ocean heat content is similar in many ways.
Higher climate sensitivity leads to higher warming, and so
does lower 4, as it represents less cooling effects from the
sulfates. The response of both variables to K, is more subtle
than to CS and 4.

Appendix B: Likelihood Function

[37] This appendix provides the likelihood function for
observations if the statistical model is given by equations (2)
and (3). We define yx = y14, . - . , V.4 Where N, is the number
of observations for diagnostic £ (k = 1 for temperature,
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Figure A1l. Emulator output as a function of UVic ESCM model parameters for the final year of pseudo-
observations for (left) temperature anomaly in the year 2006 with respect to 1850—1899 mean [°C]; (right)
0-700 m ocean heat content anomaly in year 2003 with respect to 19502003 mean [x 10?2 J]. Specifically,
two out of three parameters are changed at a time, whereas the third parameter is held fixed at the “true”
setting for the “Standard” experiment. This setting is (Kj,, CS, 4,.) = (0.19 cm?s™!, 3.1°C, 1.1) and it is
denoted by black circles.

[38] Here aj . refers to the stationary process variance and
is defined by o, = 0/ (1— ), and w;, are whitened bias-

corrected residuals. The whitened residuals are calculated
as Wyx = My — Pl for ¢ > 1. Assuming the indepen-

and k& = 2 for ocean heat content). The likelihood func-
tion for observations yy given the model and the statistical
parameters is given by [Bence, 1995; Olson et al., 2012]:

2
L(Yx|Kogs CS, Aser Ok i br) = (2,1013 k)71/2 exp <_l ’%k) dence of the residuals (between the model emulator and the
' 20, pseudo-observations) across different diagnostics, the final
x (21 Gz)f(erl)/z likelihood for e}ll ps§ud0—o.bseyvations Y = (¥1, Youc) is the
k product of the individual likelihoods:
Ni

s oxp < Ly wik) S L(Y|®) = Ly|Ksg. CS, A, 07, pr. br)

20; ‘= X L(youc|Ksg, CS, Ase, 0onC, POHC) (B2)
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Figure C1. Posterior probability distributions (pdfs) for climate sensitivity from natural variability
experiments with alternative statistical assumptions: (left) “Nat. Var. Est.”, (right) “Nat. Var., No Bias.”
Each grey line corresponds to one realization of internal climate variability. “True” input climate sensi-
tivities are shown by vertical dotted lines. Filled (open) red circles denote the mean (median) estimated
CS mode, and the red lines extend one standard deviation around the mean mode. The limits of the y-axes

are the same between panels.

Appendix C: Sensitivity of “Nar. Var.” Experiment
to Statistical Assumptions

[39] We perform two additional experiments to explore
the sensitivity of our “Nat. Var.” results to statistical assump-
tions. In the experiment “Nat. Var. Est.,” we estimate the
statistical properties of the AR(1) process representing inter-
nal climate variability (o7, oonc, p7, and ponc), as opposed
to fixing them at “true” values in “Nat. Var.” This represents
a case where we have no model, observational, or emulator
error, but we are still uncertain about the statistical properties
of the internal climate variability. We use uniform priors for
the AR(1) parameters over their prior ranges (Table 1). This
experiment has otherwise the same design as the “Nat. Var.”

[40] In the experiment “Nat. Var., No Bias” we remove
the bias by from the estimation by fixing it at the true value
of zero. The design of this experiment is otherwise identical
to the “Nat. Var.” experiment. For both “Nat. Var. Est.”

‘Nat. Var. Est.’
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20 30 40
| | |

10
!

5| Isite

1 T T T T 1
1.1 4 6 8

CS [deg. C]

0
L

and “Nat. Var.,, No Bias,” two out of 60 realizations are
tested for convergence by running the estimation twice with
different initial values for the final MCMC chain. We have
not detected any convergence problems.

[41] The results from these additional experiments are
broadly consistent with the original “Nat. Var.”: the CS pdfs
exhibit a characteristic spread around the “true” value of
3.1°C (Figures C1 and C2). The average width of the pdfs
(as measured by the 68% posterior credible intervals) is very
close to the original “Nat. Var.” case, while the scatter of CS
modes is somewhat higher (Table C1). One reason contribut-
ing to the higher mean and standard deviations compared to
“Nat. Var.” is the presence of outliers: one of the “Nat. Var.
Est.” experiments leads to a mode estimate of 7.5°C, and
one of “Nat. Var., No Bias”—to 10.8°C. These values are
4.4°C and 7.7°C higher than the “truth”, respectively. Both
of the outlying cases were tested for convergence, and no
convergence problems were detected.

‘Nat. Var., No Bias’

30 40
! |
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?
[
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Figure C2. Histograms of the modes of the estimated climate sensitivity probability density functions
from natural variability experiments with alternative statistical assumptions: (left) “Nat. Var. Est.” (right)
“Nat. Var., No Bias.” “True” input climate sensitivities are shown by vertical red lines. Y-axes limits are

the same between panels.
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Table C1. Properties of CS Estimates From the Additional “Nat. Var.” Sensitivity Experiments, and
the Original “Nat. Var.,” Compared to “Standard” Case (in Bold)*

Mean
Average Deviation Std. of Mean 68% CI
Experiment Mode of Modes Modes of pdfs
“Nat. Var.” 32 0.84 1.0 3.0
“Nat. Var. Est.” 3.7 1.1 1.4 3.0
“Nat. Var, No Bias” 3.6 1.1 1.5 3.1
“Standard” 33 1.1 1.6 35

2The mean 68% CI refers to the mean 68% posterior credible interval of CS estimates. The interval is calculated
as the range between the 16th and the 84th percentiles of the CS chains. In all experiments, the assumed “true” CS

is 3.1°C. All values are in °C.
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