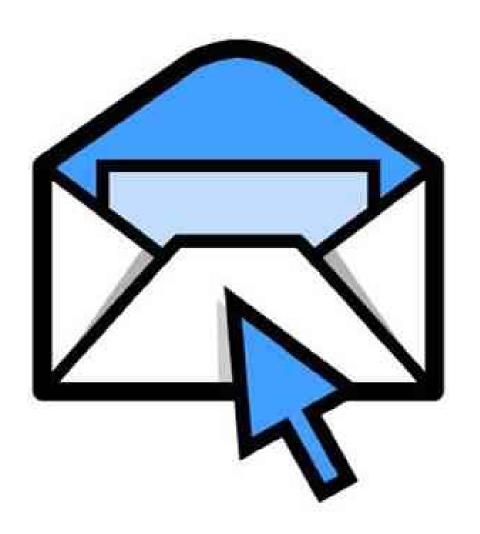
BRIEFING BY JESSE JENKINS

HOSTED BY THE CENTER FOR CLIMATE AND ENERGY DECISION MAKING

JUNE 26, 2011 – WASHINGTON D.C.

ENERGY EFFICIENCY AND THE REBOUND EFFECT A SUMMARY OF RESEARCH

A REVIEW OF THE LITERATURE


BY JESSE JENKINS TED NORDHAUS AND MICHAEL SHELLENBERGER

ENERGY EMERGENCE REBOUND & BACKFIRE AS EMERGENT PHENOMENA

EMAIL DIALOGUE

Jesse Jenkins Harry Saunders **Ted Nordhaus** Michael Shellenberger **Steve Sorrell** Lee Schipper Jim Sweeney Jonathan Koomey Danny Collenward Skip Laitner **Amory Lovins**

•••

1. REVIEW OF LITERATURE: CONCLUSION

"Rebound effects are real and significant, and combine to drive a total, economywide rebound in energy demand with the potential to erode much (and in some cases all) of the reductions in energy consumption expected to arise from below-cost efficiency improvements."

(p 4)

2. REBOUND LEAST WHERE MOST STUDIED DIRECT REBOUND FOR CONSUMERS IN RICH NATIONS = ROUGHLY 10-30%

TABLE 2.1:

Scale of Direct Rebound for Consumer Energy Services in Developed Nations -Summary

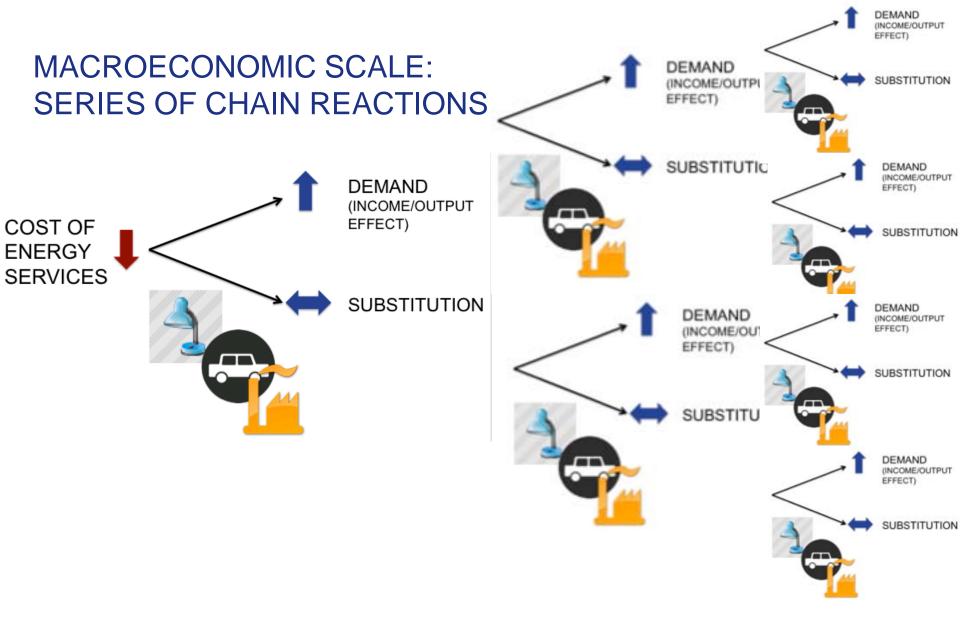
Energy Service	Range of Estimates	Best Guess	Degree of Confidence (Notes)
Automotive transport	5-87%	10-30%	HIGH (Unmeasured in these studies are changes in automotive attributes, particularly heavier vehicles and more powerful engines.)
Space heating	1.4-60%	10-30%	MEDIUM (Unmeasured in these studies are increases in the space heated and an increase in thermal comfort.)
Space cooling	0-50%	I-26%	LOW (Unmeasured in these studies are increases in the space cooled and an increase in thermal comfort.)
Water heating	<10-40%	11	<u>VERY LOW</u> (Unmeasured in these studies are reports of increased shower length or purchase of larger water heating unit.)
Other consumer energy services	0-49%	<20%	LOW

3. REBOUND GREATEST WHERE LEAST STUDIED

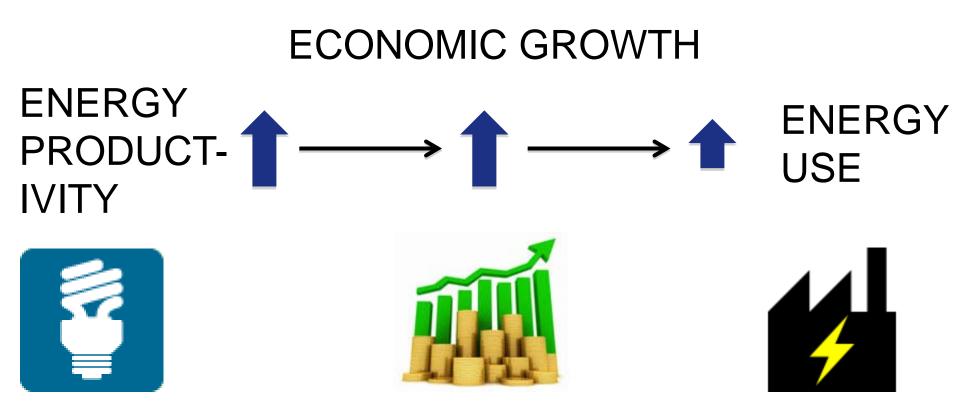
REBOUND MUCH LARGER IN DEVELOPING NATIONS ?? 30-80+% ??

3. REBOUND GREATEST WHERE LEAST STUDIED

TYPICAL DIRECT REBOUND VALUES FOR INDUSTRY MAY BE 20-70%



3. REBOUND GREATEST WHERE LEAST STUDIED


TABLE 2.2: Scale of Direct Rebound for Producing Sectors

Sector	Long-term rebound	Share of rebound due to substitution	Share of rebound due to output	Long-term rebound from substitution	Long-term rebound from output
Electric utilities	120%	75%	25%	90%	30%
Transportation	59%	57%	43%	34%	25%
Services	25%	90%	10%	23%	3%
Chemicals	53%	38%	62%	20%	33%
Construction	58%	94%	6%	55%	3%
Primary Metals	66%	84%	16%	55%	11%
Agriculture	39%	47%	53%	18%	21%
Financial Industries	61%	95%	5%	58%	3%
Government Enterprises	40%	87%	13%	35%	5%
Food & Kindred Products	40%	98%	2%	39%	1%
Paper & Alled Products	44%	80%	20%	35%	9%

4. MACRO-REBOUNDS ARE EMERGENT

4. MACRO-REBOUNDS ARE EMERGENT

SCALE OF TOTAL, ECONOMY-WIDE REBOUND?

TABLE 3.1: Survey of CGE Simulations of Economy-wide Rebound Effect

Study	Country/ Region	Projected Economy- wide Rebound
Semboja (1994)	Kenya	170-350%
Dufournaud et al. (1994)	Sudan	47-77%
Van Es et al. (1998)	Holland	15%
Vikstrom (2004)	Sweden	50-60%
Washida (2004)	Japan	35-70% (53% in central scenario)
Grepperud and Rasmussen (2004)	Norway	Small for oil use but >100% for electricity
Glomsrod and Wei (2005)	China	>100%
Hanley et al. (2005)	Scotland	120%

SCALE OF TOTAL, ECONOMY-WIDE REBOUND?

"At the global scope most relevant to climate change and energy resource depletion concerns ... perhaps the most robust picture of global economy-wide rebound to date ... projects that global efforts to capture 'noregrets,' below-cost energy savings opportunities will trigger rebound effects that collectively erode more than half (52%) of projected energy savings potential....

(p. 50).

SCALE OF TOTAL, ECONOMY-WIDE REBOUND?

- COMPLICATING FACTORS INCREASE BACKFIRE RISK
 - BACKFIRE = REBOUND > 100%
 - BACKFIRE MEANS EFFICIENCY *INCREASES* NET ENERGY USE, NOT DECREASES.

1. BACKFIRE RISK: MULTI-FACTOR PRODUCTIVITY GAINS

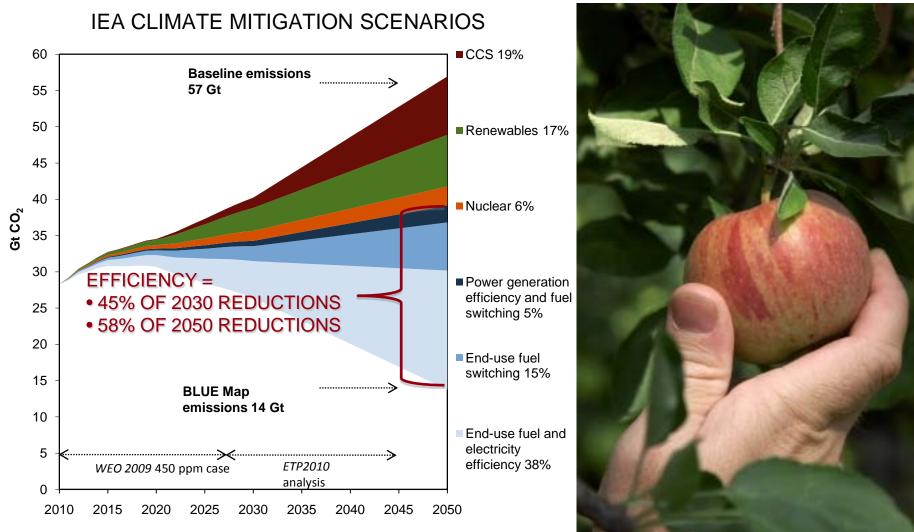
"Improved energy efficiency, especially end-use efficiency, often delivers **better services.** Efficient houses are more comfortable; efficient lighting systems can look better and help you see better; efficiency motors can be more quiet, reliable, and controllable; efficient refrigerators can keep food fresher for longer; efficient cleanrooms can improve the yield, flexibility, throughput, and setup time of microchip fabrication plants; ... retail sales pressure can rise 40% in well-daylit stores ... Such side- benefits can be one or even two orders of magnitude more valuable than the energy directly **saved.** ...**[I]n efficient buildings,** ... labor productivity typically rises by about 6-16%. Since office workers in industrialized countries cost ~100x more than office energy, a 1% increase in labor productivity has the same bottom-line effect as eliminating the energy bill – and the actual gain in labor productivity is ~6-16x bigger than that."

(Amory Lovins, 2005)

2. BACKFIRE RISK: FRONTIER EFFECTS

WHERE DOES THIS LEAVE US?

- REBOUND EFFECTS ARE REAL, SIGNIFICANT, AND CAN NO LONGER BE IGNORED.
- COMBINE TO ERODE MUCH AND IN SOME CASES ALL – OF PROJECTED ENERGY SAVINGS FROM BELOW-COST EFFICIENCY MEASURES.


WHERE DOES THIS LEAVE US?

- FURTHER RESEARCH
 - 1. Saturation effects for end-use energy services (diminishing rebounds over time?)
 - Differences by income distribution?
 - 2. Rebounds in developing/emerging economics
 - >90% of energy demand growth
 - "The shadow of Jevons lurks" here (Schipper & Grubb, 2000)
 - 3. Rebounds in productive sectors (particularly substitution & capital turnover dynamics)
 - ~2/3rds of global energy use
 - 4. Multi-factor productivity gains & implications for rebound, backfire, and economic growth
 - Relates to debate of role of energy productivity in economic growth (neoclassical vs. ecological economists)
 - 5. Frontier effects (how do we predict/forecast?)

WHERE DOES THIS LEAVE US?

- EFFICIENCY IS STILL GOOD ECONOMIC POLICY, AND PLENTY OF REASONS TO CONTINUE TO PURSUE TRULY COSY-EFFECTIVE EFFICIENCY
- BUT CONVENTIONAL CLIMATE MITIGATION STRATEGIES (WHICH TYPICALLY IGNORE REBOUND) ARE DANGEROUSLY OVERRELIANT ON EFFICIENCY

ENERGY EFFICIENCY

SOURCE: Thomas Kerr, IEA. Based on World Energy Outlook 2009 and Energy Technologies Perspectives 2010 reports.

A REVIEW OF THE LITERATURE

BY JESSE JENKINS TED NORDHAUS AND MICHAEL SHELLENBERGER

ENERGY EMERGENCE REBOUND & BACKFIRE AS EMERGENT PHENOMENA

CONTACT INFO: JESSE JENKINS DIRECTOR OF ENERGY AND CLIMATE POLICY 510-550-8800 x329 JESSE@THEBREAKTHROUGH.ORG