Bounding the Rebound Effect: Key Conceptual Issues and a Framework for Estimation

James L. Sweeney

Director, Precourt Energy Efficiency Center Professor, Management Science & Engineering Department Stanford University

Many thanks to Danny Cullenward, Jonathan Koomey, and Lee Schipper

- Key Conceptual Issues
- A Framework for Estimating the Rebound
- Some Implications for Policy

Conceptual Issues: Basic Economic Theory

- Neoclassical economics:
 - Increased efficiency lowers price of energy services
 - Leads to substitution and income effects (Slutsky equation), increasing energy service consumption
 - Absent unpriced externalities, rebound is welfare enhancing. We should be happy if there is rebound
- With market failures and non-optimizing behavior:
 - Principal-agent, imperfect information, transaction costs, unobserved or imperfectly observed prices, externalities
 - Rebound may or may not be welfare enhancing
 - Intervention need not lead to rebound

Conceptual Issues: Two Types of Rebound

- Technological Change and Neoclassical Production Functions:
 - If energy efficiency increases, price of an energy service decreases. Slutsky equation basis for analysis of rebound
 - Lower price implies substitution
 - Lower price implies income effects
 - Income effect bounded by expenditure shares multiplied by income elasticity

Slutsky equation: neoclassical change

Step 1: increased energy efficiency lowers the price of an energy service.

Conceptual Issues: Two Types of Rebound

- Market Failures and Successful Interventions
 - Market failures lead to inefficient use of energy.
 - Information, principal-agent problems, transaction costs, externalities
 - Some ways of increasing energy efficiency:
 - Create behavioral change:
 - Consumer preferences or social norms change
 - Or policy intervention:
 - Provide information, impose standards, tax consumption, etc.
- Perhaps no direct rebound effects
- Re-spending effect depends on whether change reduces overall costs or increases costs.

Behavioral Change

Step 1: raise awareness about energy use; consumers prefer to reduce consumption. Utility function shifts.

Conceptual Issues: The Counterfactual Scenario

- Goal is to demonstrate a causal link between efficiency improvements and greater than otherwise energy use.
 - Must allow for potentially larger growth/income effects, new technologies
 - Don't attribute all change to energy efficiency
- One must calculate rebound with respect to a scenario in which efficiency doesn't change.
 - Right question:
 - How does energy consumption and level of energy service change relative to scenario in which efficiency doesn't change?
 - Wrong question:
 - How does energy consumption change after efficiency improves, relative to before improvement?
 - Difficult to establish credible counterfactual scenarios with macroeconomic or long-term analyses.

Conceptual Issues: Technological Change

- What happens when technology changes?
 - Technological change often includes, but is not limited to, energy efficiency.
 - Example: cars getting more powerful and still use less fuel than old.
 - Example: big-screen TVs yet lower kwh consumption than smaller tube TV.
 - Sometimes more efficient technology coincides with increased consumption.
 - Example: Personal computers have gotten more functional and more energy efficient
 - Did increased efficiency cause energy consumption?
 - Did increased wealth cause energy consumption?
 - Need more inferential power than correlation provides. Efficiency Center 9

Neoclassical re-Spending Effects: Costless Efficiency Increases

- With costless efficiency changes, on average, re-spending should not exceed ration of energy expenditures to GDP (~9%).
 - If efficiency increases are costly, re-spending typically smaller.
- For energy efficiency changes in one sector, re-spending effect approximately proportional to 1st order energy reduction, with ratio of re-spending to 1st order reduction:

Sector expenditure on Energy	Economy-wide Energy Quantit	y)
GDP)	Sector Energy Quantity	

 Assumes all commodities have 1.0 income elasticity. If income elasticity of energy intensive commodities is less than 1.0, re-spending effect smaller; conversely if income elasticity greater than 1.0.

Percentages of Energy Use: US 2009

Neoclassical re-Spending Effects: Costless Efficiency Increases

 $\left(\frac{\text{End use expenditure on Energy}}{GDP}\right)\left(\frac{\text{Economy-wide Energy Quantity}}{\text{End use Energy Quantity}}\right)$

	Energy Expenditure /GDP	Economy-wide Energy/End Use Energy	Re-spending fractional effect
All Residential	1.8%	4.5 (1/22%)	7.6%
All Transport	4.2%	3.4 (1/29%)	14.6%
Personal Transport (assume 50% of All)	2.1%	6.8 (1/14.5%)	14.6%
All Commercial	1.2%	5.2 (1/19%)	6.5%
All Industrial	1.7%	3.4 (1/30%)	5.6%
All Energy	8.8%	1	8.8%

Induced Shifts in Final Goods Consumption

- Policy could theoretically shift consumption from energy services into other energy-intensive activities.
 - But energy services (provision of heat, light, cool, washing, drying, lighting) are energy-intensive on a per dollar basis, whereas most consumer goods are much less energy-intensive per dollar spent.
 - Thus, energy efficiency policy is likely to shift consumption to less energy-intensive goods (for most applications).

Neoclassical re-Spending Effects: Costless Efficiency Increases

U.S. Household Expenditures (\$/yr)

Source: Chris Jones, UC-Berkeley Carbon Calculator (CO2 is key reason for wanting less energy consumption)

Estimation Issues: Physical and Economic Data

- Physical Data:
 - Very few data sets are available with measures of physical energy efficiency and levels of energy services.
 - (i.e., how many air conditioners with what COP, ?)
 - Good data sets on household capital equipment, its efficiency and approximate utilization
 - Some data sets on energy intensity (gallons/mile, miles, and vehicle characteristics)
- Expenditure Data:
 - In the absence of physical data, one must infer physical efficiency from expenditure data.
 - To do this, one needs <u>marginal</u> prices by customer segment and geography:
 - Different rates (e.g., industrial vs. residential)
 - Different rate structures (e.g., peak demand charges)
 - Different markets (e.g., natural gas in CA vs. TX)
 - National and average prices will not suffice

Using General Equilibrium Models

- CGE models
 - Typically used for neoclassical analysis; less used for behavioral changes
 - Some CGE models predict backfire when significant efficiency changes are introduced.
 - CGE models usually do not include detailed physical and economic representations of consumption and efficiency.
 - CGE models are complex; results often not easily reduced to clear, causal relationships. Without an independently valid casual explanation for results, we should view them with caution.
- Challenge for all Models
 - "Efficiency" not portrayed too disaggregated
 - Energy services also overlooked
 - Thus basic link "Efficiency -> growth" weak or missing.

Other Growth Models

- Ecological Economics (E.g. Ayres, Kümmel)
- Basic idea: exergy is fundamental constraint on the size of economy, therefore more efficient use of exergy leads to economic growth. Economic growth leads to more consumption and more energy use.
- Historical studies develop production functions with K, L, E (but not tech change); thus, various terms pick up tech change.
- Theory implies marginal productivity for energy almost an order of magnitude greater than actual energy prices. Not consistent with optimizing.
- Approach excludes household and private transport (including "own account" trucks). Does include exergy in food. Analysis changing as we speak to include estimates of exergy conversion in human brains.

How Large Is Rebound? My Current Judgment

- Direct rebound
 - Small to modest for HH applications where only energy required (i.e., not attention)* (~10-30%)
 - Smaller in household appliances with fixed cycles (e.g. refrigerators)
 - More important for some parts of industry, transportation (but not all transport, and small in personal vehicles).
- Indirect rebound
 - Re-spending effect:
 - May vary, but on average should be ~9%
 - Importance in manufacturing and services with high energy cost component (air travel, some chemicals)
- Induced growth?
 - Weak evidence; more study needed.

* Space heating and cooling, some water heating, lighting

Where Does This Matter For Policy?

- Energy Efficiency Policies Clearing Market Barriers
 - Appliance and Thermal Standards Small Rebounds
 - Small rebates (\$15 for a dishwasher) trivial capital transfer may lead to behavior changes.
 - Retrofit Subsidies Possibly large rebounds for low income (Scott 1980)
- Automobile Sector
 - Much debated CAFE standard impacts small (Gillingham 2011; Hymel, Small and Vandender 2010) 20% direct
 - Other uncertain effects with large subsidies for hybrids, EV need to observe real use of vehicles
- Lessons
 - Policies complement, do not eliminate need for pricing
 - Careful monitoring needed to identify big rebounds with effects that counteract important policy goals

