Mike Blackhurst Post-Doctoral Researcher Civil & Environmental Engineering Carnegie Mellon University

Direct Rebound Effect Overview

What is the direct rebound effect?

 Increased consumption resulting from cost reductions achieved by efficiency

Much of this material is modified from

Sorrell S & Dimitropoulos J. 2008. The rebound effect: Microeconomic definitions, limitations and extensions. *Ecological Economics*, 65(3), pp.636–649.

Sorrell S, Dimitropoulos J, & Sommerville M. 2009. Empirical estimates of the direct rebound effect: A review. *Energy policy*, 37(4), pp.1356–1371.

Greening LA, Greene DL, & Difiglio C. 2000. Energy efficiency and consumption -- the rebound effect -- a survey. *Energy Policy*, 28(6-7), pp.389-401.

Definitions

Change in Energy Demand = - Change in Efficiency

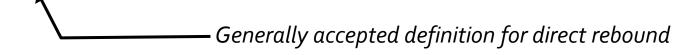
Technical (engineering) definition of efficiency

$$\frac{\text{Change in Energy Demand}}{\text{Change in Efficiency}} = -100\%$$

$$\frac{\text{Change in Energy Demand}}{\text{Change in Efficiency}} = \text{Rebound - } 100\%$$

Rebound "erodes" some technically feasible savings

Example


$$\frac{\text{Change in Energy Demand}}{\text{Change in Efficiency}} = 30\% - 100\%$$

Change in Energy Demand = 70% x Change in Efficiency

Definitions

$$\frac{\text{Change in Energy Demand}}{\text{Change in Efficiency}} = \text{Rebound} - 100\%$$

$$\frac{\Delta E / E}{\Delta \varepsilon / \varepsilon} = \frac{\Delta Work / Work}{\Delta \varepsilon / \varepsilon} - 100\%$$

Example

Rebound =
$$\frac{\Delta Work / Work}{\Delta \varepsilon / \varepsilon} = \frac{10\%}{50\%} = 20\%$$

Measurement: Econometrics

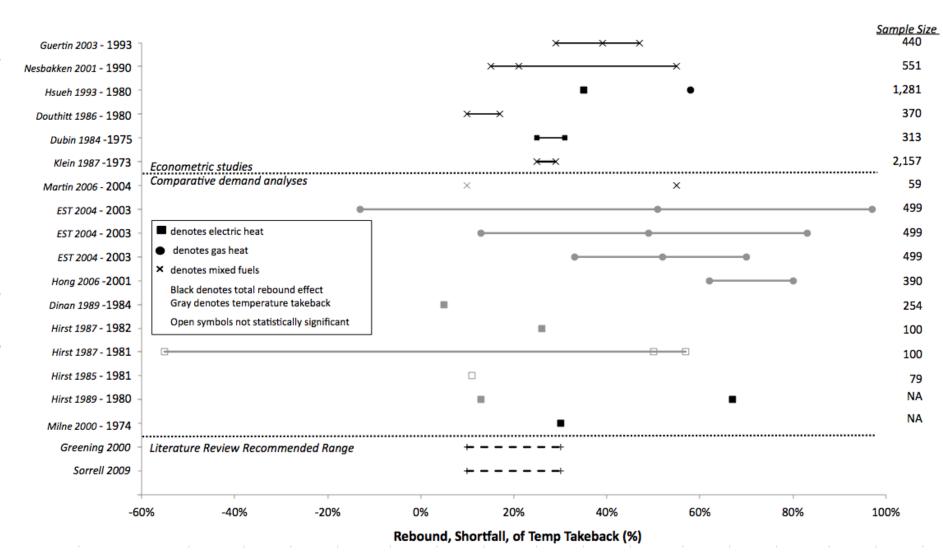
$$\frac{\Delta E / E}{\Delta \varepsilon / \varepsilon} = \frac{\Delta Work / Work}{\Delta \varepsilon / \varepsilon} - 100\%$$

$$\eta_{\varepsilon}(E) = \eta_{\varepsilon}(W) - 100\%$$

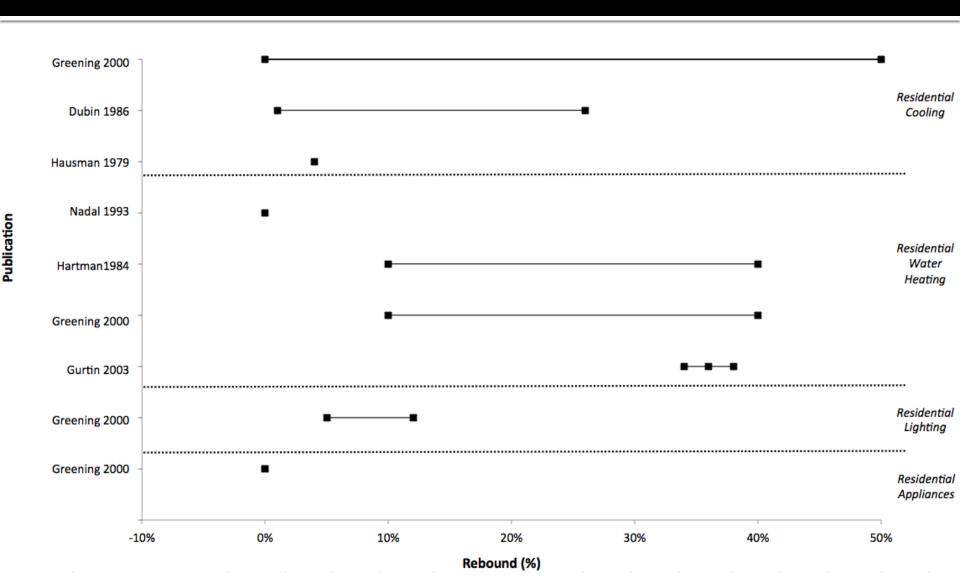
$$\eta_{\varepsilon}(E) = \eta_{\rho}(E) - 100\%$$

_____ Common means of measuring rebound (cross-sectional or longitudinal)

Measurement: Comparative Demand Analysis


- Before / After
- Often issues with
 - Energy use measurement
 - Control group
 - Sample bias
 - Confounding variables
 - Data requirements (sample size/temporal)

Empirical Estimates


- Majority share of estimates for consumers
 - Household services (mostly heating)
 - Household travel

Few empirical studies for firms

Empirical Estimates: Household Heating

Empirical Estimates: Other Residential End Uses

Econometric Approach

- Generally preferred by experts
- Limitations to own price elasticity model
 - Demand often asymmetric to price changes
 - Generally does not reflect other inputs (capital costs)
 - Does not reflect time preferences
 - User time costs
 - Efficiency not independent of prices, etc (efficiency endogenous)

Definitions from Sorrell (2007)

$$\eta_{\varepsilon}(E) = \eta_{\varepsilon}(W) - 100\%$$

$$\eta_{\varepsilon}({\it E}) = \eta_{\varepsilon}({\it Num.}) + \eta_{\varepsilon}({\it Capacity}) + \eta_{\varepsilon}({\it Utiliz.})$$
 - 100%

$$\eta_{\varepsilon}(E) = -\eta_{\varepsilon}(W) - 100\%$$

$$\eta_{\varepsilon}(E) = - \eta_{\varepsilon}(E) - 100\%$$

Assume i. price symmetry ii. other inputs (capital) constant iii. price & efficiency are independent

Hard to get data on useful work (can also be hard to get energy demand data)

$$\eta_{\varepsilon}(\mathbf{E}) = -\eta_{P}(\mathbf{S}) - \underline{\eta_{K}(\mathbf{W})} \times \underline{\eta_{\varepsilon}(\mathbf{K})} - 100\%$$
Sensitivity of capital costs to efficiency

Incorporate the effect of capital

Sensitivity of work to capital costs

$$\eta_{\rm E}({\rm E}) = -\eta_{\rm P}({\rm S})$$
 - User Time Trade-Offs - 100%

Incorporate user-time trade-offs

Research Opportunities

- Define an acceptable, useful definition of direct rebound
 - Prioritize research efforts
 - Address data gaps
- Empirical studies on firms, end uses, and demographics
- Marginal effects (saturation and new markets)
- Define experimental standards

Research Opportunities

- Define roles of empirical methods
 - Econometric strong theoretical foundation, limited data
 - Comparative demand analysis "raw" data, hard to separate into theoretical components, what controlling variables matter?
- Short-term, practical guidance for program administrators (role for expert elicitation?)
- Role of advanced metering in managing direct rebound
- Influence of carbon market (price signals) on rebound

Questions / Comments

Definitions from Sorrell (2007)

$$\eta_{\varepsilon}(E) = \eta_{\varepsilon}(W) - 100\%$$

$$\eta_{\varepsilon}(E) = \eta_{\varepsilon}(Num.) + \eta_{\varepsilon}(Capacity) + \eta_{\varepsilon}(Utiliz.) - 100\%$$

Assume i. price symmetry ii. other inputs (capital) constant iii. price & efficiency are independent

$$\eta_{\varepsilon}(E) = -\eta_{P}(W) - 100\%$$

Hard to get data on useful work (can also be hard to get energy demand data)

$$\eta_{\varepsilon}(E) = -\eta_{\varepsilon}(E) - 100\%$$

Incorporate the effect of capital

$$\eta_{\varepsilon}(\mathbf{E}) = -\eta_{P}(\mathbf{S}) - \underline{\eta_{K}(\mathbf{W})} \times \underline{\eta_{\varepsilon}(\mathbf{K})} - 100\%$$
Sensitivity of capital costs to efficiency Sensitivity of work to capital costs

$$\eta_{\varepsilon}(E) = -\eta_{P}(S \text{ or } E) - \eta_{P}^{T}(S \text{ or } E) \times \eta_{\theta}(P) \times \eta_{\varepsilon}(\theta) - 100\%$$