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Mixed Levels of Uncertainty in Complex Policy Models

Elizabeth A. Casman,1 M. Granger Morgan,1 Hadi Dowlatabadi1

The characterization and treatment of uncertainty poses special challenges when modeling
indeterminate or complex coupled systems such as those involved in the interactions between
human activity, climate and the ecosystem. Uncertainty about model structure may become
as, or more important than, uncertainty about parameter values. When uncertainty grows
so large that prediction or optimization no longer makes sense, it may still be possible to
use the model as a ‘‘behavioral test bed’’ to examine the relative robustness of alternative
observational and behavioral strategies. When models must be run into portions of their
phase space that are not well understood, different submodels may become unreliable at
different rates. A common example involves running a time stepped model far into the
future. Several strategies can be used to deal with such situations. The probability of model
failure can be reported as a function of time. Possible alternative ‘‘surprises’’ can be assigned
probabilities, modeled separately, and combined. Finally, through the use of subjective
judgments, one may be able to combine, and over time shift between models, moving from
more detailed to progressively simpler order-of-magnitude models, and perhaps ultimately,
on to simple bounding analysis.
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1. INTRODUCTION

The past two decades have witnessed substantial
progress in the way in which routine quantitative
policy analysis deals with uncertainty. From a norm
of single-value-best-estimate analysis, with sporadic
discussion of sensitivity, the field has now progressed
to the point where the use of probability distributions
to describe uncertain coefficients and the use of meth-
ods such as stochastic simulation to propagate that
uncertainty through policy models have become the
norm in engineering safety analysis and common in
health and environmental risk assessment. Of course,
there are still holdouts, particularly among the bio-
medical community,(1–3) but continuing progress is ap-
parent.
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Uncertainty about coefficient values can arise
both because the world is full of variability and ran-
dom processes, and because our understanding of
how it works is incomplete.2 Sometimes it is impor-
tant to distinguish between these two sources of un-
certainty. However, recent emphasis on the distinc-
tion,(5) particularly by EPA(2) has sometimes resulted
in the distinction being overdrawn.

While an adequate treatment of parameter un-
certainty is important, in many domains of risk and
other forms of policy analysis, uncertainty about coef-
ficient values is swamped by uncertainty about the
appropriate functional form of the models that
should be used. Model uncertainty is frequently im-

2 These two sources of uncertainty are sometimes referred to as
‘‘aleatory’’ and ‘‘epistemic.’’(4) While we have no disagreement
with this classification, we avoid the use of the terms simply
because we and many others have difficulty remembering what
they mean, and which is which!
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portant when the system involved is sufficiently com-
plex that key influences have not yet been identified,
or have been intentionally omitted or simplified to
make the model computationally tractable. It can
also be important when the causal signals are so weak
or buried in so much noise that system structure can
not be readily inferred. Dealing adequately with un-
certainty about model structure can be difficult.

Evans and his colleagues constructed an array
of plausible alternative models to describe low-dose
carcinogenic potency. They elicited subjective proba-
bility distributions from experts to characterize the
coefficients in these models, and then combined the
models using probability trees, in which the weights
were based on their own careful reading of the litera-
ture,(6) or the elicited judgments of experts.(7) In the
area of seismic analysis, Budnitz et al.(8) took this
approach a step further, using teams of experts work-
ing collaboratively to thoughtfully ‘‘weigh’’ (not sim-
ply attach weights to) alternative models and collec-
tively produce a probabilistic consensus judgment of
how the models should best be combined. Paté-Cor-
nell(9) describes this process as involving ‘‘gathering
a group of well-informed and socially adjusted indi-
viduals,’’ who construct ‘‘ a complete set of hypothe-
ses’’ and then assess ‘‘axiomatically correct probabil-
ity distributions [across these hypotheses] based on
all scientific evidence.’’

However, as the quality of scientific understand-
ing becomes poorer, developing meaningful proba-
bility judgments to combine alternative models of the
world becomes increasingly more difficult. In such
circumstances, many Bayesian theorists would advise
the analyst to specify the (perhaps infinite) set of all
priors and models which fit the constraints imposed
by whatever limited knowledge one has. Probability
weights (which might all be equal) should then be
applied across this set, and the problem should be
solved for all cases. While we have no basic theoreti-
cal disagreement with such an approach, we also
know from experience that a prescription that one’s
analytical formulation should grow in complexity and
computational intensity as one knows less and less
about the problem, will not pass the laugh test in
real-world policy circles.

2. INTEGRATED ASSESSMENT OF CLIMATE
CHANGE

Our interest in the problems of dealing with un-
certainty in very poorly understood systems has been

stimulated in recent years by our work on integrated
assessment of climate and other types of global
change.(10) The idea of integrated assessment is to use
the various tools of policy analysis to try to better
interpret available knowledge, identify and explore
the implications of alternative policy options, and
identify future research priorities which can best
serve the needs of policymakers. Since understanding
is incomplete and uneven across the problem, inte-
grated analysis must typically include elements which
are incompletely understood.

Dowlatabadi, Morgan and co-workers have built
a large stochastic simulation model called ICAM (for
Integrated Climate Assessment Model)(11) in the Ana-
lyticaTM software environment (formerly Demos).
This environment provides a powerful graphic user
interface which represents the model structure in the
form of hierarchically organized influence diagrams.
Users can explore the model by ‘‘double clicking’’
on various elements, moving down through the model
hierarchy until they reach individual model elements,
where they can observe the mathematical relation-
ships between variables and read documentation on
some of the values being used and the assumptions
that have been made. Users can easily substitute al-
ternative values or probability distributions. The
model is available at http://www.hdgc.epp.cmu.edu.
A demonstration copy of the AnalyticaTM software
can be obtained at http://www.lumina.com/software.

In the current version of ICAM, the world is
divided into twelve regions. Time is stepped in 5
year increments from 1975 to 2100. Demographic and
economic processes lead to emissions of greenhouse
gases and aerosols. These modify the composition
of the atmosphere and bring about climate change.
Climate change leads to various impacts which in
turn can affect demographic, socioeconomic and eco-
logical processes. It is possible to make policy inter-
ventions in energy use, in emissions management,
and in adapting to impacts. In some user-selected
structural variants of ICAM, economic factors, cli-
mate change, and climate impacts can influence the
initiation and path of these interventions.

In developing ICAM we found that uncertainty
about the appropriate functional form of different
sub-models is sufficiently large, and the difficulty of
constructing all plausible alternatives sufficiently
great, that it is often best to report results parametri-
cally across a set of combinations of different model
structural assumptions, in much the same way that
one reports the results of parametric sensitivity stud-
ies of coefficient uncertainty. For example, in an ap-
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plication of ICAM-2 designed to explore the proba-
bility that a specific carbon tax policy3 would yield
net positive benefits, we found that the probability
ranged from 0.15 to 0.95 for the world as a whole,
depending upon the structural assumptions made.(10)

A more recent example, from a study of the costs of
delaying mitigation activities, illustrates the effects
of alternative model structures in just the energy and
carbon emission control modules of ICAM-3 (Ta-
ble I).

Many climate policy models are designed and
solved as long-term optimization problems. In a set-
tings with uncertainties as great as those displayed
in Table I, we doubt the utility of conventional opti-
mization formulations. As an alternative, rather than
try to search for the optimal policy, we have set out
to search for robust behaviors. Just as in the model
environment, real-world policymakers will always
face great uncertainty. They must observe the world,
use what they see together with models to make fore-

Table I. Illustration of the Wide Range of Results that Can Be Obtained with ICAM Depending upon Different Structural Assumptions

Model variants

Model components M1 M2 M3 M4 M5 M6 M7 M8 M9

Are new fossil oil and gas no yes no no yes yes no yes yes
deposits discovered?

Is technical progress that no no yes no yes yes yes yes yes
uses energy affected by fuel
prices and carbon taxes?

Do the costs of abatement no no no yes no no yes yes yes
and nonfossil energy
technologies fall as users
gain experience?

Is there a policy to transfer no no no no no yes yes no yes
carbon saving technologies
to non Annex 1 countries?

TPE BAU in 2100 (EJ)
Mean 1975 2475 2250 2000 3425 2700 1450 3550 2850

TPE control in 2100 (EJ)
Mean 650 650 500 750 500 500 675 750 725

CO2 BAU 2100 (109TC)
Mean 40 50 50 40 75 55 25 73 55
SD 28 18 36 29 29 23 22 27 21

Mitig. cost (% welfare)
Mean 0.23 0.44 0.14 0.12 0.48 0.33 0.05 0.23 0.17
SD 0.45 0.23 0.23 0.22 0.28 0.12 0.07 0.12 0.11

Impact of delay (% welfare)
Mean 20.1 0.2 20.6 0.0 21 20.5 20.1 20.6 20.4
SD 1 0.3 1 0.7 1.2 0.9 0.5 0.8 0.6

aTPE 5 Total Primary Energy, BAU 5 Business as Usual (no control and no intervention), Sample size in ICAM simulation 5 400.

3 In this case, the tax began in the year 2000 and increased by
$4.00/ton of carbon every 5 years through the year 2100.

casts, choose what they think is the best strategy at
the moment, and then a few years later, repeat the
entire cycle. By building simple ‘‘decision agents’’ we
have been able to do something very similar within
the world of the ICAM model environment. Then,
across a range of alternative model worlds we run
repeated stochastic simulations of the model and ask,
among a range of plausible alternative behavioral
strategies which our agents might adopt, which one
does best in the face of the uncertainties about both
coefficient values and model structures? In the case
of the climate problem, a strategy that tracks and
attempts to control atmospheric concentration of
greenhouse gasses (as opposed to emissions or tem-
perature), using a quadratic penalty function, seems
to do best.(12) Of course, not all problems with high
uncertainty will yield such a single general result.
In some cases, even a recasting of the problem in
behavioral terms is likely to lead to different behav-
iors for different combinations of model structure.
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3. DOMAINS OF MODEL VALIDITY

Frequently one has confidence in a model used in
an application such as ICAM only within a specified
domain of the model parameter space. For example,
when we elicited judgments about climate sensitivity
from 16 leading U.S. climate scientists,(13) we also
asked for a judgment of the probability that the forc-
ing from a doubling of CO2 would induce an irrevers-
ible change in the state of the climate system, such
that once the change had occurred the climate system
would not promptly return to its previous state if the
excess radiative forcing were removed. The end to
deep water formation in the North Atlantic is a possi-
ble example of such a change. If warm water were
no longer to circulate to high latitudes in the North
Atlantic (as indeed it has not on several occasions
in the geological record) dramatic and widespread
impacts could be expected on the climate of Europe.
We would term this change irreversible if the circula-
tion did not promptly resume when the radiative forc-
ing was removed.

In addition to asking for the probability that a
2x[CO2] forcing would induce a climate state change,
we also asked experts to estimate the concentration
of CO2 that would yield a 0.2 probability of a climate
state change. Eight experts4 answered both questions
or gave a response to the first question that was 0.2
or greater. Using these expert judgments in ICAM,
Fig. 1 illustrates the temperature sensitivity results
for three experts whose judgments span the range of
usable responses we received. For each expert, the
upper curve reports the mean global temperature
response to growing concentrations of greenhouse
gases under a business as usual (no abatement and no
intervention) economic scenario. The lower curves
indicate the probability, over time, that a change in
climate state will have occurred. Box plots on the
curves were constructed from the full probability dis-
tributions generated through stochastic simulation
in ICAM.

Figure 1 displays uncertainty at several different
levels. First there is the disagreement among different
climate experts about the magnitude of climate sensi-
tivity (upper curves) and the probability of state
change (lower curves) given changes in the atmo-

4 In addition to the eight experts discussed here, two other experts
estimated probabilities of the order of 0.1 to the first question
but did not answer the second. Three gave zero as their answer
to the first question and did not answer the second. Two gave
no answer to either question. For details see Morgan and Keith.(13)

Fig. 1. Examples of predicted warming estimated via the ICAM
model (upper curves), and probability that the associated radiative
forcing will induce a state change in the climate system (lower
curves) using the probabilistic judgments of three different climate
experts. Solid dots indicate mean values (indistinguishable from
medians on this scale). Boxes span the 0.25 to 0.75 and whiskers
span 0.05 to 0.95 confidence intervals as deduced from the full
probability distributions produced through stochastic simulation
in ICAM.

spheric concentration of CO2. Then, for any given
climate expert, the box plots on the upper curves
represent uncertainty about the mean global temper-
ature as a function of time, which depends both on
the expert’s uncertain judgment of climate sensitivity
as well as other uncertainties in the ICAM model.
Thirdly, the lower curves display the expert’s esti-
mate of the probability that this model projection is
not valid because of a state change, since once such
a change occurs, the predictions of the ICAM model
no longer hold. Fourth, the box plots associated with
the lower curves represent the range of uncertainties
about that probability because of uncertainties in the
values of other parameters in the ICAM model (such
as those determining population growth, emissions
levels, etc.). Of course, we could make additional
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runs of ICAM using alternative model structural as-
sumptions (as previously illustrated in Table I) and
produce an additional series of curves corresponding
to a range of model structures.

When conducting our elicitations with the six-
teen climate experts, we encountered two experts
who chose to produce two, rather than one, esti-
mates of climate sensitivity.(13) Expert 2 gave us a
distribution similar to that of most other experts
and then gave us a second distribution with much
longer tails to include the possibility of a ‘‘state
change.’’ Expert 4 did much the same, but referred
to the wider distribution as including ‘‘surprise.’’
The fact that these two distributions are much wider
than those of all the other experts is troubling.
Our protocol asked experts to consider all possible
eventualities, and we discussed many possible con-
tingencies during the interviews. Nevertheless, given
the striking difference between these ‘‘surprise’’
responses and those of the other experts, the strong
psychological influence of the IPCC consensus judg-
ments, and the strong evidence in the literature
that most people are systematically over-confi-
dent,(14,15) we suspect that most of our experts trun-
cated the tails of their distributions.

In order to explore this issue more explicitly we
asked another climate expert (Expert 17) to describe
his best estimate of global average temperature re-
sponse to various ‘‘imaginable surprises.’’(16) He took
imaginable to mean that while plausible cause and
effect scenarios have been offered, the events would
be a surprise if they occurred because they are not
thought to be likely outcomes of increased CO2 forc-
ing. We elicited a probability distribution in climate
sensitivity for a 2x[CO2] forcing, asking the expert
not to include any surprise outcomes in estimating
this distribution. Then we asked the expert to give
quantitative estimates to describe the effects that sur-
prise scenarios could yield.

The expert chose to consider three ‘‘imaginable
surprise’’ scenarios:

1. Changes to the radiative properties of clouds
that would produce a net negative feedback
to warming. The expert assigned a probability
of 0.2 to this outcome, given a change in the
global average temperature of $28C;

2. Changes in the radiative properties of clouds
that produce a net positive feedback to warm-
ing. The expert also assigned this a probability
of 0.2 given a change in global average tem-
perature of $28C; and

3. The shutdown of the oceanic thermohaline
circulation. For a change in global average
temperature of $2.58C the expert assigned
this a probability of 0.1, increasing to 0.2 as
the global average temperature change were
to increase to more than 58C.

The first two scenarios are mutually exclusive,
but the third scenario could conceivably occur in
combination with either of the first two. However,
the expert felt that the interactions were likely to
be so nonlinear as to preclude description of their
combined effects until actual modeling studies could
be conducted.

Expert 17 was unwilling to provide enough judg-
ments to allow a systematic combination of the three
imagined surprise scenarios. He did estimate that the
combined probability of surprise from these and
other sources was about 0.3 at 2.5x[CO2], increasing
to about 0.5 at 4x[CO2].

This expert did not feel confident in his (or any-
one’s) ability to produce a complete, consistent pdf
for the probability of surprise, and it is no error that
some of the conditional probabilities are contingent
on temperature change and others on reaching vari-
ous CO2 concentration thresholds.

This set of judgments was used to examine the
implications for an ICAM temperature trajectory as
shown in Fig. 2. Clearly for this expert, the uncer-
tainty around the ‘‘no surprise’’ condition is greater
than the conventional confidence interval.

As we noted above, our theoretical Bayesian
friends tell us that the proper way to deal with a
situation like this is to obtain probability judgments
for all possible contingencies, and then combine the
results. However, when dealing with a problem as
complex as the climate system, even very cooperative
scientists, such as Expert 17, typically reach a point
at which they refuse to go further. Figure 2 provides
a more detailed description than Fig. 1 of some of
the uncertainties as the atmosphere experiences in-
creasing radiative forcing. However, given the cur-
rent state of knowledge, and the high levels of igno-
rance about some important issues, it is unlikely that
any true expert can or will be willing to go much
further.

4. PROBABILISTIC MODEL SWITCHING

Models describe the behavior of a system in
some domain of the system’s phase space. In many
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Fig. 2. ICAM simulation results for Expert 17 for the case of ‘‘no surprises,’’ and for three ‘‘imaginable surprises’’ which
involve the mutually exclusive possibilities of positive and negative feedback from clouds, as well as the possibility of a
shutdown of thermohaline circulation in the North Atlantic. Solid curves and dots report means. Light curves report 5th
and 95th percentiles. Box plots show additional information on distributions in the year 2100. (Based on a no-abatement
scenario with the same energy module configuration as in Fig. 2).

cases, a model provides a realistic description across
only a subset of the domain of interest. Thus, for
example, in Fig. 1 we saw that the ICAM model could
be taken as applicable with high probability only so
long as the level of radiative forcing remained within
some limit. In a complex model, composed of various
submodels, one’s confidence in the validity of the
different sub-models is likely to change as one tra-
verses different regions of the phase space.

The problem is easily illustrated in terms of time.
So long as concentration of CO2 stays at or below a
doubling of pre-industrial levels, we have about the
same confidence in the validity of the climate sub-
model in ICAM whether it is run for 50 years or 200
years into the future. The same is not true for sub-
models which deal with demographic or socioeco-
nomic variables. In these cases, one can extrapolate
from current trends and structures for perhaps a de-
cade, or in the case of demographics, several decades,
but then, our confidence in the validity of the submo-
dels declines rapidly because they have moved into
a region of phase space for which previous experience
may no longer be relevant.

While a number of integrated assessment mod-

els(17,18,19) build highly detailed descriptions of eco-
nomic and other social variables and then simulate
the model for a hundred years or more into the future,
we doubt the reliability of much of the detail after
even a decade. We believe that a more defensible
strategy is to deal with the more distant future (or,
to be more general, with the less well understood
region of the model phase space) by building very
simple models, which are based on order-of-magni-
tude estimates when possible, and use bounding con-
siderations such as material and energy balance and
carrying capacity, when best estimates are no
longer meaningful.

Figure 3 illustrates the general strategy we are
proposing. One starts with a detailed model that is
likely to only be reliable for a few years. Gradually
one moves over to a much simpler model based on
order of magnitude considerations. Finally, in the
long term, one can only bound the result, without
giving best estimates. The weighting functions that
are used to combine models, and make the switch
from one model to another over time, must, of course,
be based on subjective judgment. While the illus-
tration shows three models over time, there is no
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Fig. 3. Schematic illustration of the strategy of switching to progres-
sively simpler models as one moves into less well understood
regions of the problem phase space, in this case, over time. One
starts with a detailed model that is likely to only be reliable for
a few years. Gradually one moves over to a much simpler model
based on order of magnitude considerations. Finally, in the long
term, one can only bound the result, without giving best estimates.
The weighting functions for combining the models are based on
subjective judgment. While the illustration shows three models
over time, there is no reason why the number can not be more
or less than three. The worked example in Fig. 5 shows only the
switch from a simple model to a bounding estimate.

reason why the number could not be more or less
than three.

We provide a simplified illustration of this ap-
proach using the demographic module from ICAM.
Since the relevant sub-model in ICAM is only moder-
ately better than ‘‘order-of-magnitude’’ in character,
we skip the first stage and focus just on illustrating
the switch from an order-of-magnitude model to a
bounding argument.

In constructing the demographic submodel in
ICAM, Dowlatabadi used recent regional demo-

graphic and socioeconomic data to develop linear
relationships between the dependent variables: total
fertility rate, infant mortality rate, and life expectancy
and the regional aggregate socioeconomic indicators:
disposable income, female participation in the formal
workforce, access to medical care, and degree of ur-
banization, each of which in ICAM changes over time
with economic development. The resulting linear re-
gression models, estimated with data for the past
18 years, are described elsewhere.(11) The economic
growth rates for the 12 regions were based on UN
projections through the year 2100. The economic
growth rates for 2100–2300 are extrapolations of the
UN trends plus a stochastic component. We recog-
nize that these variables are not independent of one
another, that the direction of dependency may not
be as we have presumed, and that some input vari-
ables may have been defined differently by different
nations. Nonetheless, these are the best available
data, and integrated assessment is all about doing the
best one can with the data that are available.

The ICAM model estimates a global population
of 12 6 3.4 billion in 2050, compared with U.S. Bu-
reau of Census estimates of about 9 billion. The latter
does not provide probability estimates for alternative
population projections, so it is not possible to com-
pare the range of ICAM projections with official pro-
jections. In a recent paper, Lutz et al.(20) developed a
probabilistic model based on expert judgments. In
their model, in 67% of cases the world population in
the year 2100 did not exceed 12 billion. In ICAM,
for 50% of the cases, the year 2100 population never
exceeds 12 billion.

Demographer Joel E. Cohen has recently ex-
plored the question ‘‘How many people can the earth
support?’’(21,22) by developing a very simple model
that he terms a ‘‘mathematical cartoon.’’ This model
employs a carrying capacity whose magnitude evolves
over time as human technical capabilities change.
The population at any given time, P(t), is determined
as the result of a balance between human reproduc-
tion and the current carrying capacity. In the discrete
time version of the model, earth’s human carrying
capacity, K, is defined as:

K(t 1 Dt) 2 K(t) 5 Lr[K(t) 2 P(t)] Dt (1)

and global population, P, as:

P(t 1 Dt) 2 P(t) 5 rP(t)[K(t) 2 P(t)] Dt (2)

P, K, L, and r are all positive. K(0), the original
carrying capacity, must be greater than P(0), the orig-
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inal population. The constant r . 0 is termed the
Malthusian growth rate (after the Reverend Thomas
R. Malthus, who predicted that population growth
would outpace growth in food supply). The ratio
L/P(t) 5 c is termed the Condorcet parameter (after
the Marquis de Condorcet who ‘‘saw the human mind
as capable of removing obstacles to human progress).
It can be negative, zero or positive. Cohen explains
that ‘‘when c . 1, each additional person increases
the human carrying capacity enough for her own
wants plus something extra.’’ In this case, population
can grow at a rate that is faster than exponential. He
explains that ‘‘when c 5 1 each additional person
adds to carrying capacity just as much as she con-
sumes. . .P(t) grows exponentially. . . . When c ,
1, P(t) grows logistically.’’ Finally, Cohen terms L
the Mill parameter after John Stewart Mill ‘‘who
foresaw a stationary population as both inevitable
and desirable.’’

Cohen did a least squares calibration of his
model by hand, using point estimates of population
over the past 2000 years. This led to parameter esti-
mates of P(0) 5 0.252 billion people, K(0) 5 0.252789
billion people, r 5 0.0014829 per billion people, and
L 5 3.7 billion people. These equations produce a
sigmoid population curve which describes the data
well and reaches an asymptote at a population of just
under 20 billion people in about the year 2300.

Cohen assembled seven sources of population
data, which were in turn based on hundreds of differ-
ent sources of evidence. Only one of the sets of esti-
mates he used included any indication of associated
uncertainty. We conducted a careful review of these
data and conferred with several prominent demogra-
phers. On the basis of these consultations, observing
the range of the admittedly correlated estimates, and
considering the strong experimental evidence of con-
sistent expert over-confidence,(15) we assigned confi-
dence intervals that range from 617.5% in the year
0 (between 150 million and 290 million people) to
65% in 1980 (between 4 billion and 4.9 billion).

Using these uncertain estimates of past popula-
tion we then re-estimated Cohen’s model using a
Bayesian windowing technique, a method that as-
sures that the uncertainty distribution of model out-
put is consistent with the range of observed data
for that output by rejecting inconsistent simulation
results from the prior of sample outcomes.(23) The
result is a probabilistic version of the Cohen model,
which, while it should not be viewed as a reliable
estimate of future world population, provides a more
defensible upper bound on global population $100

years from now than the demographic model used
in ICAM.

Following the strategy illustrated in Fig. 3, we
performed a weighted combination of our probabilis-
tic version of Cohen’s model with the outputs of the
demographic model in ICAM, using the weighting
function shown in the upper part of Fig. 4.

Neither of these models include explicit treat-
ment of low probability catastrophic drops in popula-
tion which might be caused by pandemic, nuclear war,
or similar catastrophes, although the Cohen model is
of course consistent with past catastrophic population
declines such as those caused by the Black Plague in
the latter half of the fourteenth century and the mas-
sive loss of indigenous populations that followed Eu-
ropean contact in North America in the sixteenth
century.(24,25) A series of order-of-magnitude calcula-
tions we performed led us to conclude that on the
global scale, population decline of the order of those
experienced over the past 2000 years, and of those
discussed by present military strategists(24–27) can be
considered second order effects on century time
scales. One obvious exception would be a large me-
teor impact.(28) We have not included that contin-
gency in the current work.

5. CONCLUSIONS

The characterization and treatment of uncer-
tainty poses a number of interesting challenges when
the problems involve the assessment of indeterminate
or complex coupled systems such as those involving
human activity, climate and the ecosystem. Uncer-
tainty can derive from variability and random pro-
cesses and from the fact that we have limited under-
standing of how the world works.(3) For either or both
cases, one can have uncertainty about the values of
key model parameters. In addition, limited knowl-
edge about the how the world works can give rise to
uncertainty in model form. When such uncertainty
becomes great enough, it may no longer make sense
to try to use models for prediction or optimization,
though in such cases it may still be possible to use
the model world as a ‘‘behavioral test bed,’’ in which
one uses autonomous agents within the model world
to test the relative robustness of alternative observa-
tional and behavioral strategies in the face of uncer-
tainty.

When a complex model must be operated into
a region of its phase space for which it was not de-
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Fig. 4. Results of applying the model switch-over strategy described in
the text, and shown schematically in Fig. 3, to the ICAM demographic
model (until about 2050) and the Cohen upper-bound estimate of global
population carrying capacity. The solid curve shows the ICAM mean
projection. Shaded curves on the ICAM model show the 5th, 25th, 75th
and 95th percentiles of the model projections. The 95th percentile of the
ICAM model is blended over time with the Cohen upper-bound projec-
tion using the weighting functions shown above. Box plots report the
uncertainty associated with the Bayesian window fit of the Cohen model
to historical data. Solid dots are means, open circles medians. The boxes
span the middle 50%, and the vertical lines 90%, of the distributions.

signed, different elements of the model may degrade
at different rates. For example, different elements
of a time-stepped model may become unreliable at
different times as the model is run far into the future.
One strategy is to assess the probability of model
failure as a function of time, or of some endogenous
model variable (incremental radiative forcing in the
case illustrated here). Then one can display a time
series that reports the likelihood of model failure
along with the time series of model output. Alterna-
tively, it may be possible to identify and disaggregate
the various sources of model failure and model them
separately. The one serious problem with this strat-
egy is that in complex real-world situations, experts
are likely to be able to identify only a portion of all the
limitations or ‘‘surprises’’ that could be encountered,
and are likely to be willing to assess probabilities for

only a subset of the total. Still, identifying some and
getting part way to a full treatment is clearly better
than simply ignoring the possibilities.

Finally, when it is known that one portion of a
model will become unreliable more rapidly than
other portions of the model (e.g., over time, the socio-
economic submodel of ICAM will become unreliable
before the geophysical model), it may be possible to
develop much simpler order of magnitude models,
or perform bounding calculations, which allow one
to say something, even when detailed prediction is
not possible. Through the use of subjective judg-
ments, the results of several such analyses can be
weighted and combined, in this case over time, to
yield a more meaningful projection than would be
obtained by running a detailed high-resolution model
well past its domain of applicability.
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