A climate sensitivity estimate using an Earth System model with a fully dynamic 3D ocean
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1. Background and Introduction

* Climate sensitivity (CS), vertical ocean diffusivity and effects
of anthropogenic sulfates are key climate model parameters

* They are typically estimated by comparing ensembles of
model runs to observations in a likelihood-based manner

* Parameters giving a good fit to observations receive high
likelihood, those that do not receive low likelihood

* Typically simplified models are used

* We employ an Earth System model with a fully dynamic 3D
ocean component

4, Statistical Model and MCMC

¢ Each parameter combination receives a likelihood based on
how well the corresponding run matches the observations

e The residuals between the model and observations for
diagnostic i are modeled as an AR1 process with autocorrelation
p; and innovation standard deviation o;

* There is an additional bias term for temperature, b

¢ Physical (Kbg, CS, and A,) and statistical parameters (o, p;, and
b) are estimated jointly using Markov Chain Monte Carlo (MCMC)
method

* Posterior probability distribution functions (pdfs) are created

2. Earth System Model and its Emulator
* We use University of Victoria Earth System Climate Model
version 2.8 [UVic ESCM] (Weaver et al., 2001) with forcing
improvements described in Olson et al. (2012)
* K, varies vertical diffusion on the ocean. Range: 0.1-0.5 cm?
st
* Climate sensitivity is varied by an additional longwave
feedback parameter f*. CS range: 1.1-11.2 °C.
* A, is a multiplicative factor for the anthropogenic sulfate
albedoes. Range: 0-3 (unitless).
* We perform equilibration runs at year 1800 conditions, then
run transient ensemble with 250 different parameter
combinations for years 1800-2010
* Gaussian Process Emulator is used to approximate model
output at arbitrary parameter combination

5. Priors
* “UNIF” experiment uses uniform priors over ranges used
* “NONUNIF” experiment uses non-uniform priors for K,, and
CS to incorporate evidence from earlier studies following Olson
etal., 2012

3. Observational Constraints
* Global average atmospheric/ocean surface temperature (T)
from the HadCRUT3 dataset, years 1850-2006 (Brohan et al.,
2006)
* Global total ocean heat content change in the 0-700 m layer
(OHC700) for years 1950-2003 (Domingues et al., 2008)
* Global total ocean heat content change in the 0-3000 m
(OHC3000) layer, for vyears 1953-1996 (Gouretski and
Koltermann, 2007)
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Figure 1: Posterior pdfs from the assimilation of different
diagnostics. CS mode for ‘ALL is 2.8 °C.
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Figure 2: Sensitivity of posterior pdfs to priors. All three
diagnostics were used as constraints. Red: NONUNIF
experiment, blue: UNIF experiment, dashed: prior in the

NONUNIF experiment

4. Results (cont’d)
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Figure 3: Bivariate joint pdfs for model parameters from the

assimilation of all three diagnostics jointly.
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7. Caveats
¢ We only consider a subset of uncertain climate parameters
* We only use a single Earth system model
* We do not include all past climate forcings

8. Conclusions
¢ CS estimates are broadly considered between the diagnostics
* CS correlated with K, and aerosol effects
¢ Using all diagnostics together marginal CS mode is 2.8 °C,
while the 95% posterior credible interval is from 1.7 to 4.9 °C.
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Introduction Descriptive

Research that is motivated by potential use, even in part, must address r I'Ch | N I : : I
substantial normative components. Knowledge created through esea | deS g : Gec:gengmee; ng :
research from scientific description is different than normative design ( ) | esearc |
parameters defined by human-centric goals and purposes; a shift to the -
latter requires a shift to engineering norms and practices. A proposed |
research program in geoengineering considers potential use. As such, :
it bears similarity to engineering rather than scientific inquiry, despite |
current practitioners perceptions. Calls for public participation in this YeS BASIC |
research program can be justified by the need to prioritize the normative SCIENTIFIC | USE-INSPIRED I
components of research through consultation and engagement of | RESEARCH 1| —
clientele, a norm in engineering practice. Due to the scale and risk of E RESEARCH I |
geoengineering, this would include the general public. g %) I |
£ &
SRM research aims to both understand and control our climate. 3 S | : .
Ss— g +| | Normative Values
7 :
Research Goal 83 | | | part of research design
P . G S
Provide a justification for the mounting calls for Q 3 l l
= = o= c - 0 | |
open an_d tra_nsparent public participation in future | APPLIED .
geoengineering research. NO I RESEARCH |
- - - [ I
Some Normative Questions in , |
Geoengineering | |
T T T g — =l
OVERALL: What is humanity’s No Consideration of use? Yes
appropriate place on the planet? : Adaptd rom Stokes (1997

Policy Implications

Design Features?

—————————————————————————————————————————————————————————————————————————————————————

- .| 1. In traditional scientific pursuits, scientists have the ability to define the goals, scope and method of experimentation (using norms and
Feasibility of :

: Spleed? 5 Detectable? counteraction? Requirement: background from their discipline). In use-inspired research, researchers also find themselves in the role of engineers defining the
: Certainty of Temporal Localization? for collective: purpose of a technology.
: outcome? risk profile? action?

2. Imposing certain values onto research, by assuming normative parameters, will alienate the user (ex. speed of intervention or locus of
Intervention to what end? .| control).

I SRR \ .| 3. A geoengineering research program must prioritize normative aspects, adhering to engineering norms.

| Maximize Vaximize .| 4. There is a vast and diverse client list that should be considered and engaged when contemplating the design of geoengineering
_ Ximiz : N L . . " . I
Obtain a human crop yields? : research. This client list is bound to change at different stages of a project and may be initially limited to very few specific leaders and
certain utility’? economics? : extend as wide as individual citizens.
tempgrature? Short term X
- d  Reference [l ContactInformat
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Background

Coping with Uncertainty of River Flood Forecasts
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The National Weather Service (NWS) issues river forecasts up
to five days ahead. Their accuracy decreases with increasing lead
time and increasing deviance from the average gage height.

There are tive problems.

1.

The quality of river forecasts is poor. Flood

Carnegie
Mellon
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Objectives

- Update river forecast verification

- Quantity uncertainty in river forecasts

- Identify implications of uncertainty for emergency operators
- Assess emergency operators® handling of uncertainty

- Explore ways to communicate uncertainty

- Propose follow-up to NOAA'‘s River Forecast Verification Plan

warnings beyond two days of lead time have little skill.

2. The forecasts have not improved between 1983
and 2002 [2].

3. NOAA has made the first steps to verify forecasts
in 2006 [1] but with unknown effect.

4. Itis unknown how local emergency operators

use these forecasts. Studies on the use and benefits of
river forecasts have failed to quantity their correct usage [4].
Discussing the use of climate forecasts by water resource
managers Rayner ¢/ a/. detect wide-spread 1gnorance as to
the use of those forecasts [5].

5. Despite the large uncertainties in forecast, there have
been no studies on how to communicate its signifincat
to decision makers.

The National Oceanic and Atmospheric Administration
(INOAA) has introduced systematic verification of river
forecasts and initiated probabilitistic ensemble forecasting [3].

Without an integration of engineering and
social sciences, NOAA'’s technical
improvements will not increase safety.
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Figure 1: Comparison of error of river forecasts (forecast-observed) at Blackwell, OK
on Chikaskia Raver for two time periods (1995-2003 and 2004-2011). Flood stage:
291t., 90th percentile of observations: 7 ft. The difference between observation and
forecasts increases with lead time. The error in the second time period is equal or worse
than in the first. The variance decreased.
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Figure 2: Probability that a flood warning was received depending on observed gage height
for Blackwell, OK on the Chikaskia River 1995 —2011. It is wuniikely that an

ermergency operator receives a flood warning. However, there are relatively many false

alarms as well.

Downstream

Preliminary Results

1. Flood forecasts have not significantly improved
between 1995-2011 (Figure 1). It was previously found

that forecasts did not improve from 1983-2002 [2].

2. Flood forecasts underestimate the observed gage

height (Figure 1).

3. The discriminability of flood forecasts is low.
Emergency operators are not warned for most floods. If they
are warned, there is a considerable probability that no flood

will occur (Figure 2).

Future Work

To make the efforts of verifiying flood forecasts and quantifying
their uncertainty worth it, the following steps need to be taken.

1. Examine the emergency operator‘s understandin
gency op g

of uncertainty.
2. Explore ways to ensure correct use of forecasts.
3. Quantity added value of improved forecasts.
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Abstract

. . . Table 1: Summary of probabilistic judgments that statements 1-8 on chemical issues are true, sorted by Table 2: Summary of probabilistic judgments that statements 9-18 on biological and biogeochemical
The Oceans mOderate the rate a nd Seve rlty Of Cllmate Cha nge by abso rbl ng self-reported level of knowledge. If respondents provided a range for a statement, the lower bound is issues are true, sorted by self-reported level of knowledge. If respondents provided a range for a
. . . . used here. Full responses are reported in the Supplementary Information. statement, the lower bound is used here. For statements 9-14 and 16-18, respondents were asked to
massive amounts of anthropogenic CO,. However, this absorption results coneder ange o O i calcum cbonais saaion ke, . prefcid o 2100 under bin
. e . . . . Respondents reporting Respondents reporting as usual CO, emissions. Full responses are reported in the Supplemental Information.
in large-scale changes in seawater chemistry, which are collectively — oodor expert — | mited or no knowledge
knowledge (or NR)
: i : : : : Asscascd =08 >08 Respondents reporting | Respondents reporti
referred to as anthropogenic ocean acidification. Despite its potentially probabilit w098 | el | cos | s00s | ot | <og L | Rememtente roporiiag | Rempendents reporiing
<0.98 <0.98 knowledge (or NR)
. 1 1A 1 1. Anthropogenic ocean acidification Assessed >0.8 >0.8
widespread consequences, the problem of ocean acidification has been I Anvopogenic eean aediieation | T T T T T mosty | soos | o | <os| so08 | 2 | <os
. . . . . atmosphere that end up in the ocean. <0.98 <0.98
largely absent from most policy discussions of CO, emissions, both 2 Nonemvopogencocean | || | | S Ao
. . . . the geological past. calcification for most calcifying 3 1 . 0 : 1
because the science is relatively new and because the research community 5 Anthropogenic ooean aciification organiams
is currently in progress and is 27 9 1 0 12 < 10. Anthropogenic ocean
: Tt : ble. acidification will stimulate
has yet to deliver a clear message to decision makers regarding the o0 is STCO S T e primary productioninsome | 7 | 6 | o | 1 | 6 |
y g g g. important for dete-rmining ocean 13 15 5 0 - 9 primary producers
current state of knowledge. Here we report the results of the first expert cidifcarion impacts 2 s the o 1T, Antaspogaiio oo
: : . e 3 2 4 1 > 16
. . e 1e e . . 5. Over the next century, assuming nitrogen fixation in some
survey in the field of ocean acidification. Fifty-three experts, who had business as usual CO, emissior niogen fixers ___
) scenarios, anthropogenic ocean 12. Some species or strains are
. . o . acidification will continue at a rate 6 9 5 3 9 17 tolerant when tested today at
previously participated in an IPCC workshop, were asked to assess 22 fste than non-anthropogenic evels of anthropogenicocean | 12| 9| 8 | 4 | 6 |10
acidification has ever occurred in the acidification projected for 2100
° ° ° ° ° ° ° past 55 l\fiyf 13 s : tra' ,"
declarative statements about ocean acidification and its possible 6 Framan sciviTes Beyond CO; be olerant by 2100 because they
.ﬁ d I I emissions, such as eutrophication and 16 ] 6 p 10 10 have acclimated or adapted to 2 6 15 1 6 12
. . : ff, affect ocean acidification in anthronogenic ocean
consequences. We find a relatively strong consensus on most issues coastl regions iifaon
. « e fe . 7. The magnitude of future 14. Anthropogenic ocean
related to past, present and future chemical aspects of ocean acidification, anbropogenic ocean aciification | 18| 8| 2 | 2 | 4 | on acidificason wil inpect T N T e
. . . . « o (e . 8. Anthropogenic ocean acidification negatively (e.g. coral reefs)
including the assertions that: non-anthropogenic ocean acidification s avcurd e oisorcal | o | s [, [y | o | 1 Reovery (.o o e
. _ m past occan aclaiicaton 1 5 2 b 6 16
. . . . . . chemistry for centuries. events has taken as long as 1 to
events have occurred in the geological past; anthropogenic CO, emissions 10 millon year
16. Anthropogenic ocean 4 5 14 1 3 18
are the main (but not the only) mechanism generating the current ocean Table 3: Summary of robabilsic judgments that statements 19-22 on policy and socio-economi el
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Dade County, Florida

Hurricane Modification and Adaptation in Miami-
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/ A - ] 1 ovel - e , 4 \ Five landfall locations along the Miami-Dade Florida Division of Emergency Management
Annual losses from tropical cyclones (TCs) 1pt ¢ United States are estimated to county coastline were chosen for varying suggested a variety of hardening techniques
average about $10-billion/year (/). Damages can be caused by wind, storm surge, and floods. Some U.S. topography, bathymetry, and population

coastal areas experience high TC wind speeds and contain geophysical features vulnerable to storm Shutters Dikes
surges and flooding . Since the Miami-Dade County coastline contains a range of topography,
bathymetry, and infrastructure with different susceptibilities to TCs, optimal policy choices regarding
methods to reduce TC damages depend strongly on locale. Various adaptation techniques, including
“hardening”, are available to reduce damages from TCs(2-3). Strategies to reduce the intensity of a TC,
while still hypothetical, offer a very different approach to reducing damages (4).

Improved roof-wall and Raising Buildings
roof-deck connections T

We 1nvestigate tropical cyclone wind and storm surge damage reduction for five
areas along the Miami-Dade County coastline either by hardening buildings or by the hypothetical

application of wind-wave pumps to modify storms. We calculate surge height and wind speed as
functions of return period and sea surface temperature reduction by wind-wave pumps. We then estimate

LI

P

. . 5 " 20 20 zlometers Courtesy of 123RF, FEMA, Hurricane Proof, Matthews House Movers
costs and economic losses with the FEMA HAZUS-MH MR3 damage model (5) and census data on | . . . | . . . |
property at risk. Surge damages are best reduced through a surge barrier. Wind damages are best reduced
b rtfolio of techni that, ing th k and tly deployed, include wind- . . . . .
v & DOLIOHG O IETues Hal, asstitiiis THey WOTR afit ait CUTIRCLy CRpoyee, Hietute wiid-wave We specified climatological variables in We used HAZUS MH-MR3 to calculate total
pumps. g .
scientific models to calculate return aggregate damages from combinations of
periods of wind and storm surge damage reduction techniques
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